Friday, December 12, 2014

x=4cos^2theta , y=2sintheta Find all points (if any) of horizontal and vertical tangency to the curve.

Parametric curve (x(t),y(t)) has a horizontal tangent if its slope dy/dx is zero i.e when dy/dt=0 and dx/dt!=0
It has a vertical tangent if its slope approaches infinity i.e it is undefined, which implies that dx/dt=0 and dy/dt!=0  
Given parametric equations are:
x=4cos^2(theta) ,y=2sin(theta)
Here the parameter is theta
Let's take the derivative of x and y with respect to theta
dx/(d theta)=4(2cos(theta)d/(d theta)cos(theta))
dx/(d theta)=4(2cos(theta)(-sin(theta)))
dx/(d theta)=-4(2sin(theta)cos(theta))
Use trigonometric identity: sin(2theta)=2sin(theta)cos(theta)
dx/(d theta)=-4sin(2theta)
dy/(d theta)=2cos(theta)
For Horizontal tangents, set the derivative of y equal to zero
dy/(d theta)=2cos(theta)=0
=>cos(theta)=0
=>theta=pi/2,(3pi)/2
Let's check dx/(d theta) for the above angles,
For theta=pi/2
dx/(d theta)=-4sin(2*pi/2)=-4sin(pi)=0
For theta=(3pi)/2
dx/(d theta)=-4sin(2*(3pi)/2)=-4sin(3pi)=0
So, there are no horizontal tangents.
Now for vertical tangents, set the derivative of x equal to zero,
dx/(d theta)=-4sin(2theta)=0
=>sin(2theta)=0
=>2theta=0,pi,2pi,3pi
=>theta=0,pi/2,pi,(3pi)/2
Let's check for the above angles,
For theta=0
dy/(d theta)=2cos(0)=2 
For theta=pi/2
dy/(d theta)=2cos(pi/2)=0
For theta=pi
dy/(d theta)=2cos(pi)=-2
For theta=(3pi)/2
dy/(d theta)=2cos((3pi)/2)=0
So, the curve has vertical tangents at theta=0,pi
Now let's find the corresponding x and y coordinates by plugging theta in the parametric equation,
For theta=0
x=4cos^2(0)=4
y=2sin(0)=0
For theta=pi
x=4cos^2(pi)=4
y=2sin(pi)=0
So, the given parametric curve has vertical tangent at (4,0).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...