Friday, December 5, 2014

College Algebra, Chapter 9, 9.1, Section 9.1, Problem 38

Determine the first four partial sums and the $nth$ partial sum of the sequence $\displaystyle a_n = \frac{1}{n+1} - \frac{1}{n+2}$
The terms of the sequence are

$
\begin{equation}
\begin{aligned}
a_1 &= \frac{1}{1+1} - \frac{1}{1+2} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\\
\\
a_2 &= \frac{1}{2+1} - \frac{1}{2+2} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}\\
\\
a_3 &= \frac{1}{3+1} - \frac{1}{3+2} = \frac{1}{4} - \frac{1}{5} = \frac{1}{20}\\
\\
a_4 &= \frac{1}{4+1} - \frac{1}{4+2} = \frac{1}{5} - \frac{1}{6} = \frac{1}{30}\\
\end{aligned}
\end{equation}
$

The first four partial sums are.

$
\begin{equation}
\begin{aligned}
s_1 &= \frac{1}{6} = \frac{1}{2} - \frac{1}{3} &&= \frac{1}{6}\\
\\
s_2 &= \frac{1}{6} + \frac{1}{12} = \frac{1}{2} - \frac{1}{3} + \left(\frac{1}{3} - \frac{1}{4} \right) &&= \frac{1}{4}\\
\\
s_3 &= \frac{1}{6} + \frac{1}{12} + \frac{1}{20} = \frac{1}{2} - \frac{1}{3} + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) &&= \frac{3}{10}\\
\\
s_4 &= \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} = \frac{1}{2} - \frac{1}{3} + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) && = \frac{1}{3}
\end{aligned}
\end{equation}
$

The $nth$ partial sum is
$\displaystyle s_n = \frac{1}{2} - \frac{1}{n+2}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...