Saturday, December 20, 2014

Calculus of a Single Variable, Chapter 8, 8.5, Section 8.5, Problem 20

int x/(16x^4-1)dx
To solve using partial fraction method, the denominator of the integrand should be factored.
x/(16x^4-1)=x/((2x-1)(2x+1)(4x^2+1))
Take note that if the factors in the denominator are linear, each factor has a partial fraction in the form A/(ax+b) .
If the factors are in quadratic form, each factor has a partial fraction in the form (Ax+B)/(ax^2+bx+c) .
So expressing the integrand as sum of fractions, it becomes:
x/((2x-1)(2x+1)(4x^2+1))=A/(2x-1)+B/(2x+1)+(Cx+D)/(4x^2+1)
To determine the values of A, B, C and D, multiply both sides by the LCD of the fractions present.
(2x-1)(2x+1)(4x^2+1)*x/((2x-1)(2x+1)(4x^2+1))=(A/(2x-1)+B/(2x+1)+(Cx+D)/(4x^2+1)) *(2x-1)(2x+1)(4x^2+1)
x= A(2x+1)(4x^2+1) + B(2x-1)(4x^2+1)+ (Cx+D)(2x-1)(2x+1)
Then, assign values to x in which either 2x-1, 2x+1, or4x^2+1 will become zero.
So plug-in x=1/2 to get the value of A.
1/2=A(2(1/2)+1)(4(1/2)^2+1)+B(2(1/2)-1)(4(1/2)^2 + 1) + (C(1/2)+D)(2(1/2)-1)(2(1/2)+1)
1/2=A(4) + B(0)+(C(1/2)+D)(0)
1/2=4A
1/8=A
Plug-in x=-1/2 to get the value of B.
-1/2=A(2(-1/2)+1)(4(-1/2)^2+1) + B(2(-1/2)-1)(4(-1/2)^2+1) + (C(-1/2)+D)(2(-1/2)-1)(2(-1/2)+1)
-1/2=A(0)+B(-4) +(C(-1/2)+D)(0)
-1/2=-4B
1/8=B
To solve for D, plug-in the values of A and B. Also, plug-in x=0.
0=1/8(2(0)+1)(4(0)^2+1) + 1/8(2(0)-1)(4(0)^2+1) + (C(0)+D)(2(0)-1)(2(0)+1)
0=1/8 - 1/8 -D
0=D
To solve for C, plug-in the values of A, B and D. Also, assign any value to x. Let it be x=1.
1=1/8(2(1)+1)(4(1)^2+1) +1/8(2(1) -1)(4(1)^2+1) + (C(1) + 0)(2(1) -1)(2(1)+1)
1=15/8+5/8+C(3)
1=10/4+3C
-3/2=3C
-1/2=C
So the partial fraction decomposition of the integrand is:
int x/(16x^4-1)dx
=int(x/((2x-1)(2x+1)(4x^2+1)))dx
=int (1/(8(2x-1)) + 1/(8(2x+1)) - x/(2(4x^2+1)) )dx
Then, express it as three integrals.
=int 1/(8(2x-1))dx + int 1/(8(2x+1))dx - int x/(2(4x^2+1)) dx
=1/8int 1/(2x-1)dx + 1/8int 1/(2x+1)dx - 1/2int x/(4x^2+1) dx
To take the integral of each, apply substitution method.
For the first integral, let the substitution be:

u=2x-1
du=2dx
(du)/2=dx

For the second integral, let the substitution be:

v = 2x+1
dv=2dx
(dv)/2=dx

And for the third integral, let the substitution be:

w=4x^2+1
dw=8xdx
(dw)/8=xdx

So the three integrals become:
= 1/8 int 1/u * (du)/2 + 1/8 int 1/v *(dv)/2 -1/2 int 1/w * (dw)/8
=1/16 int 1/u du + 1/16 int 1/v dv - 1/16 int 1/w dx
Then, apply the formula int 1/x dx = ln|x| + C .
=1/16 ln|u| + 1/16 ln|v| - 1/16ln|w|+C
And substitute back u = 2x - 1 , v = 2x + 1 and w = 4x^2+1 .
= 1/16ln|2x-1| + 1/16ln|2x+1| -1/16|ln4x^2+1|+C

Therefore, int x/(16x^4-1)dx=1/16ln|2x-1| + 1/16ln|2x+1| -1/16|ln4x^2+1|+C .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...