int x/(16x^4-1)dx
To solve using partial fraction method, the denominator of the integrand should be factored.
x/(16x^4-1)=x/((2x-1)(2x+1)(4x^2+1))
Take note that if the factors in the denominator are linear, each factor has a partial fraction in the form A/(ax+b) .
If the factors are in quadratic form, each factor has a partial fraction in the form (Ax+B)/(ax^2+bx+c) .
So expressing the integrand as sum of fractions, it becomes:
x/((2x-1)(2x+1)(4x^2+1))=A/(2x-1)+B/(2x+1)+(Cx+D)/(4x^2+1)
To determine the values of A, B, C and D, multiply both sides by the LCD of the fractions present.
(2x-1)(2x+1)(4x^2+1)*x/((2x-1)(2x+1)(4x^2+1))=(A/(2x-1)+B/(2x+1)+(Cx+D)/(4x^2+1)) *(2x-1)(2x+1)(4x^2+1)
x= A(2x+1)(4x^2+1) + B(2x-1)(4x^2+1)+ (Cx+D)(2x-1)(2x+1)
Then, assign values to x in which either 2x-1, 2x+1, or4x^2+1 will become zero.
So plug-in x=1/2 to get the value of A.
1/2=A(2(1/2)+1)(4(1/2)^2+1)+B(2(1/2)-1)(4(1/2)^2 + 1) + (C(1/2)+D)(2(1/2)-1)(2(1/2)+1)
1/2=A(4) + B(0)+(C(1/2)+D)(0)
1/2=4A
1/8=A
Plug-in x=-1/2 to get the value of B.
-1/2=A(2(-1/2)+1)(4(-1/2)^2+1) + B(2(-1/2)-1)(4(-1/2)^2+1) + (C(-1/2)+D)(2(-1/2)-1)(2(-1/2)+1)
-1/2=A(0)+B(-4) +(C(-1/2)+D)(0)
-1/2=-4B
1/8=B
To solve for D, plug-in the values of A and B. Also, plug-in x=0.
0=1/8(2(0)+1)(4(0)^2+1) + 1/8(2(0)-1)(4(0)^2+1) + (C(0)+D)(2(0)-1)(2(0)+1)
0=1/8 - 1/8 -D
0=D
To solve for C, plug-in the values of A, B and D. Also, assign any value to x. Let it be x=1.
1=1/8(2(1)+1)(4(1)^2+1) +1/8(2(1) -1)(4(1)^2+1) + (C(1) + 0)(2(1) -1)(2(1)+1)
1=15/8+5/8+C(3)
1=10/4+3C
-3/2=3C
-1/2=C
So the partial fraction decomposition of the integrand is:
int x/(16x^4-1)dx
=int(x/((2x-1)(2x+1)(4x^2+1)))dx
=int (1/(8(2x-1)) + 1/(8(2x+1)) - x/(2(4x^2+1)) )dx
Then, express it as three integrals.
=int 1/(8(2x-1))dx + int 1/(8(2x+1))dx - int x/(2(4x^2+1)) dx
=1/8int 1/(2x-1)dx + 1/8int 1/(2x+1)dx - 1/2int x/(4x^2+1) dx
To take the integral of each, apply substitution method.
For the first integral, let the substitution be:
u=2x-1
du=2dx
(du)/2=dx
For the second integral, let the substitution be:
v = 2x+1
dv=2dx
(dv)/2=dx
And for the third integral, let the substitution be:
w=4x^2+1
dw=8xdx
(dw)/8=xdx
So the three integrals become:
= 1/8 int 1/u * (du)/2 + 1/8 int 1/v *(dv)/2 -1/2 int 1/w * (dw)/8
=1/16 int 1/u du + 1/16 int 1/v dv - 1/16 int 1/w dx
Then, apply the formula int 1/x dx = ln|x| + C .
=1/16 ln|u| + 1/16 ln|v| - 1/16ln|w|+C
And substitute back u = 2x - 1 , v = 2x + 1 and w = 4x^2+1 .
= 1/16ln|2x-1| + 1/16ln|2x+1| -1/16|ln4x^2+1|+C
Therefore, int x/(16x^4-1)dx=1/16ln|2x-1| + 1/16ln|2x+1| -1/16|ln4x^2+1|+C .
Saturday, December 20, 2014
Calculus of a Single Variable, Chapter 8, 8.5, Section 8.5, Problem 20
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment