Tuesday, May 5, 2015

College Algebra, Exercise P, Exercise P.4, Section Exercise P.4, Problem 26

Solve the expression $\displaystyle \frac{3^2 \cdot 4^{-2} \cdot 5}{2^{-4} \cdot 3^3 \cdot 25 }$

$
\begin{equation}
\begin{aligned}
\frac{3^2 \cdot 4^{-2} \cdot 5}{2^{-4} \cdot 3^3 \cdot 25 } &= \frac{2^4\cdot 3^2\cdot 5}{4^2\cdot 3^3\cdot 25} && \text{Law: } \frac{a^{-n}}{b^{-m}} = \frac{b^m}{a^n}\\
\\
&= \frac{2^4\cdot 3^2 \cdot 5}{(2^2)^2 \cdot 3^3 \cdot5^2} && \text{Factor}\\
\\
&= \frac{2^4 \cdot 3^2 \cdot 5}{2^4 \cdot 3^3 \cdot 5^2} && \text{Law: } \frac{a^m}{a^n} = a^{m-n}\\
\\
&= 2^{4-4} \cdot 3^{2-3} \cdot 5^{1-2} && \text{Simplify}\\
\\
&= 2^0 \cdot 3^{-1} \cdot 5^{-1} && \text{Definition of negative exponents } a^{-n} = \frac{1}{a^n}\\
\\
&= \frac{1}{3 \cdot 5} && \text{Simplify}\\
\\
&= \frac{1}{15}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...