Saturday, May 16, 2015

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 41

How fast is the distance from the plane to the radar station increasing after one minute?


Using cosine law,

$
\begin{equation}
\begin{aligned}
y^2 &= x^2 + 1^2 - 2 (x) (1) \cos (120^\circ)\\
\\
y^2 &= x^2 + 1 - 2x \left( \frac{-1}{2}\right)\\
\\
y^2 &= x^2 + 1 + x
\end{aligned}
\end{equation}
$


Taking the derivative with respect to time

$
\begin{equation}
\begin{aligned}
2y \frac{dy}{dt} &= 2x \frac{dx}{dt} + \frac{dx}{dt}\\
\\
\frac{dy}{dt} &= \frac{2x+1}{2y} \left( \frac{dx}{dt} \right) && \Longleftarrow \text{ Equation 1}
\end{aligned}
\end{equation}
$

The distance covered by the plane after one minute is
$\displaystyle x = \frac{300 \text{km}}{\cancel{\text{hr}}} \left( \frac{1 \cancel{\text{hr}}}{60 \cancel{\text{min}}} \right) ( 1 \cancel{\text{min}}) = 5 \text{km}$

So if $x = 5$,
$y = \sqrt{5^2 + 1 + 5} = \sqrt{31}$km

Now, plugging all the values we get in Equation 1

$
\begin{equation}
\begin{aligned}
\frac{dy}{dt} &= \frac{2(5) + 1}{2(\sqrt{31})} (300)\\
\\
\frac{dy}{dt} &= 296.3487 \frac{\text{km}}{\text{hr}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...