Monday, May 25, 2015

Single Variable Calculus, Chapter 6, 6.1, Section 6.1, Problem 12

Sketch the region enclosed by the curves $y = x^2$, $y = 4x - x^2$. Then find the area of the region.


By using vertical strips
$\displaystyle A = \int^{x_2}_{x_1} \left(y_{\text{upper}} - y_{\text{lower}} \right) dx$
In order to get the values of the upper and lower limits, we equate the two functions to get its point of intersection. Thus

$
\begin{equation}
\begin{aligned}
x^2 &= 4x - x^2\\
\\
-2x^2 + 4x &= 0 \\
\\
2x (-x + 2) &= 0
\end{aligned}
\end{equation}
$

we have, $x = 0$ and $x = 2$
Therefore,

$
\begin{equation}
\begin{aligned}
A &= \int^2_0 \left[ \left( 4x - x^2\right) - x^2\right] dx\\
\\
A &= \int^2_0 \left( 4x - 2x^2\right) dx\\
\\
A &= \left[ \frac{4x^2}{2} - \frac{2x^3}{3} \right]^2_0\\
\\
A &= \frac{8}{3} \text{ square units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...