Saturday, May 9, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 62

Find the volume obtained by rotating the region bounded by $y = \sin^2 x$ and $y = 0$ from $0 \leq x \leq \pi$ about $x$-axis.




By using vertical strips, if you slice the figure, you'll get a cross sections of circle with radius $r = y_{\text{upper}} - y_{\text{lower}} = \sin^x - 0 = \sin^2 x$. So, the cross sectional area is computed by $A = \pi r^2 = \pi \left( \sin^2 x \right)^2$. Thus, the volume is...

$
\begin{equation}
\begin{aligned}
V = \int^b_a A (x) dx &= \int^\pi_0 \pi \left( \sin^2 x \right)^2 && \text{ recall that } \sin^2 x = \frac{1 - \cos (2x)}{2}\\
\\
&= \pi \int^\pi_0 \left[ \frac{1 - \cos (2x) }{2} \right]^2 dx\\
\\
&= \frac{\pi}{4} \int^\pi_0 \left[ 1 - 2 \cos (2x) + \cos^2 (2x) \right] dx && \text{ recall that } \cos^2(x) = \frac{1 + \cos (2x) }{2}\\
\\
&= \frac{\pi}{4} \int^\pi_0 \left[ 1 - 2 \cos (2x) + \left[ \frac{1+\cos(2(2x))}{2} \right]\right]dx \\
\\
&= \frac{\pi}{4} \int^\pi_0 \left[ \frac{3}{2} - 2 \cos (2x) + \frac{\cos(4x)}{2} \right] dx\\
\\
&= \frac{\pi}{4} \left[ \int^\pi_0 \frac{3}{2}dx - 2 \int^\pi_0 \cos (2x) dx + \frac{1}{2} \int^\pi_0 \cos(4x) dx \right]\\
\\
&= \frac{\pi}{4} \left[ \left( \frac{3}{2} x \right)^\pi_0 - 2 \left( \frac{1}{2} \right) \left[ \sin (2x) \right]^\pi_0 + \frac{1}{2} \left( \frac{1}{4} \right) \left[ \sin (4x) \right]^\pi_0 \right]\\
\\
&= \frac{3 \pi^2}{8} \text{ cubic units}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...