Sunday, July 5, 2015

Calculus of a Single Variable, Chapter 5, 5.7, Section 5.7, Problem 33

To be able to evaluate the given integral: int_0^2 (dx)/(x^2-2x+2) , we
complete the square of the expression:x^2-2x+2 .
To complete the square, we add and subtract (-b/(2a))^2 .
The x^2-2x+2 resembles the ax^2+bx+c where:
a=1 , b =-2 and c=2 .
Then,
(-b/(2a))^2 =(-(-2)/(2(1)))^2
=(2/2)^2
= (1)^2
=1
Add and subtract 1 :
x^2-2x+2 +1-1
Rearrange as: (x^2-2x +1) +2-1 = (x-1)^2+1
Plug-in x^2-2x+2 = (x-1)^2+1 in the given integral:int_0^2 (dx)/(x^2-2x+2) .
int_0^2 (dx)/(x^2-2x+2) =int_0^2 (dx)/((x-1)^2+1)
This resembles the basic integral formula for inverse tangent function:
int (du)/(u^2+a^2) =1/a *arctan(u/a)+C
Then indefinite integral F(x)+C,
int (dx)/((x-1)^2+1^2) =1/1 *arctan((x-1)/1)+C
=arctan(x-1)+C
For the definite integral, we apply: F(x)|_a^b= F(b)-F(a) .
arctan(x-1)|_0^2 =arctan(2-1) -arctan(0-1)
=arctan(1) -arctan(-1)
=pi/4 -(-pi/4)
=pi/4 +pi/4
=(2pi)/4
=pi/2

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...