Tuesday, July 28, 2015

College Algebra, Chapter 7, Review Exercises, Section Review Exercises, Problem 36

Show that the matrices $\displaystyle A = \left[ \begin{array}{ccc}
2 & -1 & 3 \\
2 & -2 & 1 \\
0 & 1 & 1
\end{array} \right]$ and $\displaystyle B = \left[ \begin{array}{ccc}
\displaystyle \frac{-3}{2} & 2 & \displaystyle \frac{5}{2} \\
-1 & 1 & 2 \\
1 & -1 & -1
\end{array} \right]$ are inverses of each other by calculating the products $AB$ and $BA$

We perform the matrix multiplications to show that $AB = I$ and $BA = I$


$
\begin{equation}
\begin{aligned}

AB =& \left[ \begin{array}{ccc}
2 & -1 & 3 \\
2 & -2 & 1 \\
0 & 1 & 1
\end{array} \right]
\left[ \begin{array}{ccc}
\displaystyle \frac{-3}{2} & 2 & \displaystyle \frac{5}{2} \\
-1 & 1 & 2 \\
1 & -1 & -1
\end{array} \right]

=

\left[ \begin{array}{ccc}
2 \cdot \left( \frac{-3}{2} \right) + (-1) \cdot (-1) + 3 \cdot 1 & 2 \cdot 2 + (-1) \cdot 1 + 3 \cdot (-1) & \displaystyle 2 \cdot \frac{5}{2} + (-1) \cdot 2 + 3 \cdot (-1) \\
\displaystyle 2 \cdot \left( \frac{-3}{2} \right) + (-2) \cdot (-1) + 1 \cdot 1 & 2 \cdot 2 + (-2) \cdot 1 + 1 \cdot (-1) & \displaystyle 2 \cdot \frac{5}{2} + (-2) \cdot 2 + 1 \cdot (-1) \\
\displaystyle 0 \cdot \left( \frac{-3}{2} \right) + 1 \cdot (-1) + 1 \cdot 1 & 0 \cdot 2 + 1 \cdot 1 + 1 \cdot (-1) & \displaystyle 0 \cdot \frac{5}{2} + 1 \cdot 2 + 1 \cdot (-1)
\end{array} \right]

=

\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]
\\
\\
\\
\\
BA =& \left[ \begin{array}{ccc}
\displaystyle \frac{-3}{2} & 2 & \displaystyle \frac{5}{2} \\
-1 & 1 & 2 \\
1 & -1 & -1
\end{array} \right]
\left[ \begin{array}{ccc}
2 & -1 & 3 \\
2 & -2 & 1 \\
0 & 1 & 1
\end{array} \right] =
\left[ \begin{array}{ccc}
\displaystyle \frac{-3}{2} \cdot 2 + 2 \cdot 2 + \frac{5}{2} \cdot 0 & \displaystyle \frac{-3}{2} \cdot (-1) + 2 \cdot (-2) + \frac{5}{2} \cdot 1 & \displaystyle \frac{-3}{2} \cdot 3 + 2 \cdot 1 + \frac{5}{2} \cdot 1 \\
-1 \cdot 2 + 1 \cdot 2 + 2 \cdot 0 & -1 \cdot (-1) +1 \cdot (-2) +2 \cdot 1 & -1 \cdot 3 + 1 \cdot 1 + 2 \cdot 1 \\
1 \cdot 2 + (-1) \cdot 2 + (-1) \cdot 0 & 1 \cdot (-1) + (-1) \cdot (-2) + (-1) \cdot 1 & 1 \cdot 3 + (-1) \cdot 1 + (-1) \cdot 1
\end{array} \right]
=
\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\end{aligned}
\end{equation}
$


The matrices $AB$ and $BA$ both arrive in the same result so the matrices $A$ and $B$ are inverses of each other.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...