Thursday, November 19, 2015

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 18

intdx/[(ax)^2-b^2]^(3/2)
Let's use the integral substitution,
Let u=ax
du=adx
=>dx=(du)/a
=int(du)/(a(u^2-b^2)^(3/2))
=1/aint(du)/(u^2-b^2)^(3/2)
Now let's use the trigonometric substitution,
Let u=bsec(theta)
so du=bsec(theta)tan(theta)d theta
Plug these in the integrand,
=1/aint(bsec(theta)tan(theta))/(b^2sec^2(theta)-b^2)^(3/2)d theta
=1/aint(bsec(theta)tan(theta))/(b^2(sec^2(theta)-1))^(3/2)d theta
=1/aint(bsec(theta)tan(theta))/((b^2)^(3/2)(sec^2(theta)-1)^(3/2))d theta
Now use the identity:tan^2(theta)=sec^2(theta)-1
=1/aint(bsec(theta)tan(theta))/(b^3(tan^2(theta))^(3/2))d theta
=1/aint(sec(theta)tan(theta))/(b^2tan^3(theta))d theta
=1/(ab^2)intsec(theta)/(tan^2(theta))d theta
=1/(ab^2)int(1/cos(theta))/((sin^2(theta))/(cos^2(theta)))d theta
=1/(ab^2)int(1/cos(theta))*(cos^2(theta))/(sin^2(theta))d theta
=1/(ab^2)intcos(theta)/(sin^2(theta))d theta
Now let v=sin(theta)
=>dv=cos(theta)d theta
=1/(ab^2)int1/v^2dv
=1/(ab^2)(v^(-2+1)/(-2+1))
=1/(ab^2)(-1/v)
substitute back v=sin(theta)
=-1/(ab^2sin(theta))
We have used the substitution u=bsec(theta)
So,cos(theta)=b/u
using pythagorean identity,
sin^2(theta)+cos^2(theta)=1
sin^2(theta)+(b/u)^2=1
sin^2(theta)=1-b^2/u^2
sin^2(theta)=(u^2-b^2)/u^2
sin(theta)=sqrt(u^2-b^2)/u
Also recall we have used u=ax,
:.sin(theta)=sqrt((ax)^2-b^2)/(ax)
=-1/(ab^2sqrt((ax)^2-b^2)/(ax))
=(-1/(b^2))(x/sqrt((ax)^2-b^2))
Add a constant C to the solution,
=(-1/b^2)(x/sqrt((ax)^2-b^2))+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...