Saturday, November 28, 2015

cosh(x) + cosh(y) = 2cosh((x+y)/2)cosh((x-y)/2) Verify the identity.

cosh(x) + cosh(y) = 2cosh((x+y)/2)cosh((x-y)/2)
proof:
Taking RHS , let us solve the proof
 RHS=>2cosh((x+y)/2)cosh((x-y)/2)
=2(((e^((x+y)/2)+e^(-(x+y)/2))/2)* ((e^((x-y)/2)+e^(-(x-y)/2))/2))
its like 2((A+B)*(C+D))=2(AC+AD+BC+BD)
on multilication
=2[[(e^((x+y)/2)*(e^((x-y)/2)]+[(e^((x+y)/2)*(e^(-(x-y)/2)]+[(e^(-(x+y)/2)*(e^((x-y)/2)]+[(e^(-(x+y)/2)*(e^(-(x-y)/2)]]/4
=[[(e^((x+y)/2)*(e^((x-y)/2)))]+[(e^((x+y)/2)*(e^(-(x-y)/2))]+[(e^(-(x+y)/2)*(e^((x-y)/2))]+[(e^(-(x+y)/2)*(e^(-(x-y)/2))]]/2
As (e^((x+y)/2)*(e^((x-y)/2))) = e^((2x+y-y)/2)=e^x
similarly
(e^((x+y)/2)*(e^(-(x-y)/2)))=e^y
(e^(-(x+y)/2)*(e^((x-y)/2)))=e^-y
(e^(-(x+y)/2)*(e^(-(x-y)/2)))=e^-x
so,
[[(e^((x+y)/2)*(e^((x-y)/2))]+[(e^((x+y)/2)*(e^(-(x-y)/2)]+[(e^(-(x+y)/2)*(e^((x-y)/2)]+[(e^(-(x+y)/2)*(e^(-(x-y)/2)]]/2
=(e^x+e^y+e^-y+e^-x)/2
=(e^x+e^(-x)+e^y+e^(-y))/2
= (e^x+e^(-x))/2 +(e^y+e^(-y))/2
= cosh(x) + cosh(y)
 
And so , LHS=RHS
so ,
cosh(x) + cosh(y) = 2cosh((x+y)/2)cosh((x-y)/2)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...