Saturday, October 29, 2016

College Algebra, Chapter 1, 1.3, Section 1.3, Problem 74

Solve $b^2 x^2 - 5bx + 4 = 0 (b \neq 0)$ for $x$.


$
\begin{equation}
\begin{aligned}

b^2 x^2 - 5bx + 4 =& 0
&& \text{Given}
\\
\\
b^2 x^2 - 5bx =& -4
&& \text{Subtract 4}
\\
\\
x^2 - \frac{5x}{b} =& \frac{-4}{b^2}
&& \text{Divide both sides by } b^2
\\
\\
x^2 - \frac{5x}{b} + \frac{25}{4b^2} =& \frac{-4}{b^2} + \frac{25}{4b^2}
&& \text{Complete the square: add } \left( \frac{\displaystyle \frac{-5}{b}}{2} \right)^2 = \frac{25}{4b^2}
\\
\\
\left( x - \frac{5}{2b} \right)^2 =& \frac{-4}{b^2} + \frac{25}{4b^2}
&& \text{Perfect square}
\\
\\
x - \frac{5}{2b} =& \pm \sqrt{\frac{-16 + 25}{4b^2}}
&& \text{Take the square root, then simplify the right side of the equation by using LCD}
\\
\\
x =& \frac{5}{2b} \pm \sqrt{\frac{9}{4b^2}}
&& \text{Add } \frac{5}{2b}, \text{ simplify the right side of the equation}
\\
\\
x =& \frac{5 + 3}{2b} \text{ and } x = \frac{5 - 3}{2b}
&& \text{Solve for } x
\\
\\
x =& \frac{4}{b} \text{ and } x = \frac{1}{b}
&& \text{Simplify}



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...