Sunday, October 23, 2016

int x^2sinx dx Find the indefinite integral

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
 For the given  integral problem: int x^2 sin(x) dx , we may apply integration by parts: int u *dv = uv - int v *du.
Let:
u = x^2  then du =2x dx  
dv= sin(x) dx then v = -cos(x)
Note: From the table of integrals, we have int sin(u) du = -cos(u) +C .
Applying the formula for integration by parts, we have:
int x^2 sin(x) dx= x^2*(-cos(x)) - int ( -cos(x))* 2x dx
                              = -x^2cos(x)- (-2) int x*cos(x) dx
                              =-x^2cos(x)+2 int x *cos(x) dx
Apply another set of integration by parts on int x *cos(x) dx .
Let: u =x then du =dx
       dv =cos(x) dx then v =sin(x)
Note: From the table of integrals, we have int cos(u) du =sin(u) +C .
int x *cos(x) dx = x*sin(x) -int sin(x) dx
                              = xsin(x) -(-cos(x))  
                              = xsin(x) + cos(x)
Applyingint x *cos(x) dx =xsin(x) + cos(x) , we get the complete indefinite integral as:
int x^2 sin(x) dx=-x^2cos(x)+2 int x *cos(x) dx
                              =-x^2cos(x)+2 [xsin(x) + cos(x)]+C
                               =-x^2cos(x)+2xsin(x) +2cos(x) +C
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...