Monday, October 10, 2016

Single Variable Calculus, Chapter 3, 3.7, Section 3.7, Problem 23

The table below gives the population of the world in the 20th century.

$
\begin{array}{|c|c|c|c|}
\hline\\
\text{Year} & \text{Populations} && \text{Year} & \text{Populations}\\
& \text{(in millions)} && & \text{(in millions)}\\
\hline\\
1900 &1650 &&1960 &3040\\
1910 &1750 &&1970 &3710\\
1920 &1860 &&1980 &4450\\
1930 &2070 &&1990 &5280\\
1940 &2300 &&2000 &6080\\
1950 &2560 &&\\
\hline
\end{array}
$


For the year 1920,

$
\begin{equation}
\begin{aligned}
m_1 &= \frac{P(1920) - P(1910)}{1920 - 1910} = \frac{1860-1750}{1920-1910} = 11\\
\\
m_2 &= \frac{P(1930) - P(1920)}{1930-1920} = \frac{2070-1860}{1930-1920} = 21
\end{aligned}
\end{equation}
$

The rate of population growth in 1920 is $\displaystyle \frac{m_1+m_2}{2} = \frac{11+21}{2} = 16 \frac{\text{million}}{\text{years}}$
For the year 1980,

$
\begin{equation}
\begin{aligned}
m_1 &= \frac{P(1980) - P(1970)}{1980 - 1970} = \frac{4450-3710}{1980-1970} = 74\\
\\
m_2 &= \frac{P(1990) - P(1980)}{1990-1980} = \frac{5280-4450}{1990-1980} = 83
\end{aligned}
\end{equation}
$

The rate of population growth in 1980 is $\displaystyle \frac{m_1+m_2}{2} = \frac{74+83}{2} = 78.5 \frac{\text{million}}{\text{years}}$
b.)


Based from the graph, the model for the cubic function is
$P(x) = 0.0013x^3 + 7.0614x^2 + 12823 x - 8\times 10^6$


$
\begin{equation}
\begin{aligned}
\text{c.) } P'(x) &= 3(0.0013)x^2 - 2(7.0614) x + 12823(1)\\
\\
P'(x) &= 0.0039x^2 - 14.1228 x + 12823
\end{aligned}
\end{equation}
$

when $x= 2000$,

$
\begin{equation}
\begin{aligned}
P'(2000) &= 0.0039(2000)^2 - 14.1228(2000) + 12823\\
\\
P'(2000) &= 177.4 \frac{\text{million}}{\text{year}}
\end{aligned}
\end{equation}
$


d.) when $x = 1920$

$
\begin{equation}
\begin{aligned}
P'(1920) &= 0.0039(1920)^2 - 14.1228(1920) + 12823\\
\\
P'(2000) &= 84.184 \frac{\text{million}}{\text{year}}
\end{aligned}
\end{equation}
$


when $x = 1980$,

$
\begin{equation}
\begin{aligned}
P'(2000) &= 0.0039(1980)^2-14.1228(1980) + 12823\\
\\
P'(2000) &= 149.416 \frac{\text{million}}{\text{year}}
\end{aligned}
\end{equation}
$

Our estimated values in part(a) is very much different with our answer in part(d).

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...