Tuesday, October 4, 2016

int (x^2+5) / (x^3-x^2+x+3) dx Use partial fractions to find the indefinite integral

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
To determine the indefinite integral of int (x^2+5)/(x^3-x^2+x+3) dx , we apply partial fraction decomposition to expand the integrand: f(x)=(x^2+5)/(x^3-x^2+x+3)
The pattern on setting up partial fractions will depend on the factors  of the  denominator. The factored form of x^3-x^2+x+3 =(x+1)(x^2-2x+3) .
For the linear factor (x+1) , we will have partial fraction: A/(x+1) .
For the quadratic factor (x^2-2x+3) , we will have partial fraction: (Bx+C)/(x^2-2x+3) .
The integrand becomes:
(x^2+5)/(x^3-x^2+x+3) =A/(x+1)+(Bx+C)/(x^2-2x+3)
Multiply both side by the LCD =(x+1)(x^2-2x+3) .
((x^2+5)/(x^3-x^2+x+3) )*(x+1)(x^2-2x+3)=(A/(x+1)+(Bx+C)/(x^2-2x+3))*(x+1)(x^2-2x+3)
x^2+5=A(x^2-2x+3)+(Bx+C)(x+1)
We apply zero-factor property on (x+1)(x^2-2x+3) to solve for values we can assign on x.
x+1 =0 then x=-1
x^2-2x+3=0 then x=1+-sqrt(2)i
To solve for A , we plug-in x=-1 :
(-1)^2+5=A((-1)^2-2*(-1)+3)+(B*(-1)+C)(-1+1)
1+5=A(1+2+3)+(-B+C)*0
6 = 6A
6/6= (6A)/6
A=1
To solve for C , plug-in A=1  and x=0 so that B*x becomes 0 :
0^2+5=1(0^2-2*0+3)+(B*0+C)(0+1)
0+5=1(0-0+3)+ (0+C)(1)
5 = 3 +C
C= 5-3
C =2 .
To solve for B , plug-in A=1 , C=2 , and x=1 :
1^2+5=1(1^2-2*1+3)+(B*1+2)(1+1)
1+5 = 1 (1-2+3)+(B+2)(2)
6 = 2 +2B+4
2B = 6-2-4
2B=0
(2B)/2 = 0/2
B =0
Plug-in A = 1 , B =0 , and C=2 , we get the partial fraction decomposition:
(x^2+5)/(x^3-x^2+x+3) =1/(x+1)+(0x+2)/(x^2-2x+3)
                      =1/(x+1)+2/(x^2-2x+3)
The integral becomes:
int(x^2+5)/(x^3-x^2+x+3) dx = int [1/(x+1)+2/(x^2-2x+3)] dx
Apply the basic integration property: int (u+v) dx = int (u) dx + int (v) dx
int [1/(x+1)+2/(x^2-2x+3)] dx =int 1/(x+1)dx +int 2/(x^2-2x+3)dx
For the first integral, we apply integration formula for logarithm: int 1/u du = ln|u|+C .
Let u =x+1 then du = dx
int 1/(x+1) dx =int 1/u du
                 = ln|u|
                 = ln|x+1|
Apply indefinite integration formula for rational function:
int 1/(ax^2+bx+c) dx = 2/sqrt(4ac-b^2)arctan((2ax+b)/sqrt(4ac-b^2)) +C
By comparing "ax^2 +bx +c " with "x^2-2x+3 ", we determine the corresponding values: a=1 , b=-2 , and c=3 .
The second integral becomes:
int 2/(x^2-2x+3)dx= 2int 1/(x^2-2x+3)dx
=2*[2/sqrt(4*1*3-(-2)^2)arctan((2*1x+(-2))/sqrt(4*1*3-(-2)^2))]
=2*[2/sqrt(12-4)arctan((2x-2)/sqrt(12-4))]
=2*[2/sqrt(8)arctan((2x-2)/sqrt(8))]
=2*[2/(2sqrt(2))arctan((2(x-1))/(2sqrt(2)))]
=2/sqrt(2)arctan((x-1)/sqrt(2))
=(2arctan((x-1)/sqrt(2))) /sqrt(2)
Combining the results, we get the indefinite integral as: 
int (x^2+5)/(x^3-x^2+x+3) dx =ln|x+1|+(2arctan((x-1)/sqrt(2))) /sqrt(2)+C
                                =ln|x+1|+ sqrt(2)arctan((sqrt(2)(x-1))/2) +C
                                =ln|x+1|+ sqrt(2)arctan((xsqrt(2)-sqrt(2))/2) +C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...