int(3-x)/(3x^2-2x-1)dx
Let's use partial fraction decomposition on the integrand,
(3-x)/(3x^2-2x-1)=(3-x)/(3x^2+x-3x-1)
=(3-x)/(x(3x+1)-1(3x+1))
=(3-x)/((3x+1)(x-1))
Now form the partial fractions using the denominator,
(3-x)/((3x+1)(x-1))=A/(3x+1)+B/(x-1)
Multiply equation by the denominator (3x+1)(x-1)
=>(3-x)=A(x-1)+B(3x+1)
=>3-x=Ax-A+3Bx+B
=>3-x=(A+3B)x+(-A+B)
comparing the coefficients of the like terms,
A+3B=-1 ----------------(1)
-A+B=3 ----------------(2)
Now let's solve the above equations to get A and B,
Add the equations 1 and 2,
4B=-1+3
4B=2
B=2/4
B=1/2
Plug in the value of B in equation 1,
A+3(1/2)=-1
A+3/2=-1
A=-1-3/2
A=-5/2
Plug in the value of A and B in the partial fraction template,
=(-5/2)/(3x+1)+(1/2)/(x-1)
=-5/(2(3x+1))+1/(2(x-1))
So, int(3-x)/(3x^2-2x-1)dx=int(-5/(2(3x+1))+1/(2(x-1)))dx
Apply the sum rule,
=int-5/(2(3x+1))dx+int1/(2(x-1))dx
Take the constant out,
=-5/2int1/(3x+1)dx+1/2int1/(x-1)dx
Now let's evaluate both the above integrals separately,
int1/(3x+1)dx
Apply integral substitution:u=3x+1
=>du=3dx
=int1/u(du)/3
Take the constant out,
=1/3int1/udu
Use the common integral:int1/xdx=ln|x|
=1/3ln|u|
Substitute back u=3x+1
=1/3ln|3x+1|
Now evaluate the second integral.
int1/(x-1)dx
Apply integral substitution: u=x-1
du=1dx
=int1/udu
Use the common integral:int1/xdx=ln|x|
=ln|u|
Substitute back u=x-1
=ln|x-1|
int(3-x)/(3x^2-2x-1)dx=-5/2(1/3ln|3x+1|)+1/2ln|x-1|
Simplify and add a constant C to the solution,
=-5/6ln|3x+1|+1/2ln|x-1|+C
Monday, September 18, 2017
Calculus of a Single Variable, Chapter 8, 8.5, Section 8.5, Problem 8
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment