Friday, September 1, 2017

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 28

Find an equation of the tangent to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$ at the point $\displaystyle \left(-3\sqrt{3},1\right)$ using Implicit Differentiation.
If $y'= m\text{ (slope)}$ then,
$\displaystyle \frac{d}{dx} \left(x^{\frac{2}{3}}\right) + \frac{d}{dx} \left(y^{\frac{2}{3}}\right) = \frac{d}{dx} (4)$


$
\begin{equation}
\begin{aligned}
\frac{2}{3} (x)^{\frac{-1}{3}} + \frac{2}{3} (y)^{\frac{-1}{3}} \frac{dy}{dx} &= 0\\
\\
\frac{2}{3\sqrt[3]{x}} + \frac{2}{3 \sqrt[3]{y}} y' &= 0\\
\\
\frac{2}{3\sqrt[3]{y}} y' &= \frac{-2}{3 \sqrt[3]{x}}\\
\\
y' &= \frac{-2(3\sqrt[3]{y})}{2(3\sqrt[3]{x})}\\
\\
y' &= \frac{-\sqrt[3]{y}}{\sqrt[3]{x}}
\end{aligned}
\end{equation}
$

For $x = -3\sqrt{3}$ and $y =1 $, we obtain

$
\begin{equation}
\begin{aligned}
y' = m &= - \frac{\sqrt[3]{y}}{\sqrt[3]{x}}\\
\\
m &= - \frac{\sqrt[3]{1}}{\sqrt[3]{3-\sqrt{3}}}\\
\\
m &= \frac{1}{\sqrt{3}}
\end{aligned}
\end{equation}
$


Using the point slope form

$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)\\
\\
y - 1 & = \frac{1}{\sqrt{3}} [x - ( -3 \sqrt{3})]\\
\\
y - 1 & = \frac{1}{\sqrt{3}} (x + 3\sqrt{3})\\
\\
y &= \frac{x+3\sqrt{3}}{\sqrt{3}} +1 \\
\\
y &= \frac{x+3\sqrt{3}+\sqrt{3}}{\sqrt{3}}\\
\\
y &= \frac{x+4\sqrt{3}}{\sqrt{3}} && \text{Equation of the tangent line at } (-3\sqrt{3},1)
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...