Thursday, September 14, 2017

Single Variable Calculus, Chapter 5, 5.2, Section 5.2, Problem 26

a.) Determine the approximation to the integral $\displaystyle \int^4_0 \left( x^2 - 3x \right) dx$ using Riemann Sum with right end points and $n = 8$
Let $f(x) = x^2 - 3x$
With $n= 8$ the interval width is $\displaystyle \Delta x = \frac{b-a}{n} = \frac{4-0}{8} = \frac{4}{8} = \frac{1}{2}$

And the right end points are $x_1 = 0.5$, $x_2 = 1.0$, $x_3 = 1.5$, $x_4 = 2.0$, $x_5 = 2.5$, $x_6 = 3.0$, $x_7 = 3.5$ and $x_8 = 4.0$

So the Riemann Sum is

$
\begin{equation}
\begin{aligned}
R_8 &= \sum\limits_{i = 1}^8 f(x_i) \Delta x\\
\\
R_8 &= f(0.5) \Delta x + f(1.0) \Delta x + f(1.5) \Delta x + f(2.0) \Delta x + f(2.5) \Delta x + f(3.0) \Delta x + f(3.5) \Delta x + f(4.0) \Delta x\\
\\
R_8 &= \left( \frac{-5}{4} \right) \left( \frac{1}{2} \right) + (-2) \left( \frac{1}{2} \right) + \left( \frac{-9}{4} \right) \left( \frac{1}{2} \right) + (-2) \left( \frac{1}{2} \right) + \left( \frac{-5}{4} \right) \left( \frac{1}{2} \right) + (0) \left( \frac{1}{2} \right) + \left( \frac{7}{4} \right) \left( \frac{1}{2} \right) + (4) \left( \frac{1}{2} \right)\\
\\
R_8 &= \frac{-5}{8} - 1 - \frac{9}{8} - 1 - \frac{5}{8} + \frac{7}{8} + 2 \\
\\
R_8 &= \frac{-5-8-9-8-5+7+16}{8}\\
\\
R_8 &= \frac{-12}{8}\\
\\
R_8 &= \frac{-3}{2}\\
\\
R_8 &= -1.5
\end{aligned}
\end{equation}
$


b.) Sketch a diagram to illustrate the approximation in part(a)



Evaluate $\displaystyle \int^4_0 \left( x^2 - 3x) \right) dx$
Using the definition of the integral
$\displaystyle \int^b_a f(x) dx = \lim\limits_{n \to \infty} \sum\limits_{i = 1}^n f(x_i) \Delta x$

$
\begin{equation}
\begin{aligned}
\Delta x &= \frac{b-a}{n}\\
\\
\Delta x &= \frac{4-0}{n}\\
\\
\Delta x &= \frac{4}{n}\\
\\
x_i &= a + i \Delta x\\
\\
x_i &= 0 + \frac{4}{n} i\\
\\
x_i &= \frac{4i}{n}
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n f \left( \frac{4i}{n} \right) \left( \frac{4}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left[ \left( \frac{4i}{n} \right)^2 - 3 \left( \frac{4i}{n} \right) \right] \left( \frac{4}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left( \frac{16i^2}{n^2} - \frac{12i}{n} \right) \left( \frac{4}{n} \right)\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \left( \frac{64i^2}{n^3} - \frac{48i}{n^2} \right)
\end{aligned}
\end{equation}
$

Evaluate the summation

$
\begin{equation}
\begin{aligned}
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \sum\limits_{i = 1}^n \frac{64i^2}{n^3} - \sum\limits_{i = 1}^n \frac{48i}{n^2} \\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{64}{n^3} \sum\limits_{i = 1}^n i^2 - \frac{48}{n^2} \sum\limits_{i = 1}^n i \\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{64}{n^3} \left[ \frac{n(n+1)(2n+1)}{6} \right] - \frac{48}{n^2} \left[ \frac{n(n+1)}{2} \right]\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{32(n+1)(2n+1)}{3n^2} - \frac{[24(n+1)]}{n}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{32(2n^2+n+2n+1)}{3n^2} - \frac{(24n+24)}{n}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{64n^2+96n+32}{3n^2} - \frac{(24n+24)}{n}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{64n^2 + 96n + 32 - 72n^2 - 72n}{3n^2}\\
\\
\sum\limits_{i = 1}^n f(x_i) \Delta x &= \frac{-8n^2 + 24n + 32}{3n^2}
\end{aligned}
\end{equation}
$


Evaluating the limit

$
\begin{equation}
\begin{aligned}
\int^4_0 \left( x^2 - 3x \right) dx &= \lim_{n \to \infty} \sum\limits_{i = 1}^n f(x_i) \Delta x\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \lim_{n \to \infty} \left( \frac{-8n^2+24n+32}{3n^2} \right)\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \lim_{n \to \infty} \left( \frac{\frac{-8\cancel{n^2}}{\cancel{n^2}} + \frac{24n}{n}+\frac{32}{n^2} }{\frac{3\cancel{n^2}}{\cancel{n^2}}} \right)\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \lim_{n \to \infty} \left( \frac{-8 + \frac{24}{n}+\frac{32}{n} }{3} \right)\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \frac{-8 + \lim\limits_{n \to \infty}\frac{24}{n}+ \lim\limits_{n \to \infty} \frac{32}{n^2} }{3}\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \frac{-8+0+0}{3}\\
\\
\int^4_0 \left( x^2 - 3x \right) dx &= \frac{-8}{3}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...