Monday, September 3, 2018

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 2

Solve the equation $\sqrt{2x} + x = 0$ by doing the following steps.

a.) Isolating the radical.


$
\begin{equation}
\begin{aligned}

\sqrt{2x} + x =& 0
&& \text{Given}
\\
\\
\sqrt{2x} =& -x
&& \text{Isolate the radical}
\\
\\
\sqrt{2} \cdot \sqrt{x} =& -x
&& \text{Divide both sides by } \sqrt{x}
\\
\\
\sqrt{2} =& \frac{-x }{\sqrt{x}}
&& \text{Apply the properties of exponent}
\\
\\
\sqrt{2} =& -x^{\left( 1 - \frac{1}{2} \right)}
&&
\\
\\
\sqrt{2} =& -x^{\frac{1}{2}}
&& \text{Square both sides}
\\
\\
(\sqrt{2})^2 =& (-x^{\frac{1}{2}})^2
&& \text{Simplify}
\\
\\
x =& 2

\end{aligned}
\end{equation}
$


b.) Squaring both sides


$
\begin{equation}
\begin{aligned}

\sqrt{2x} + x =& 0
&& \text{Given}
\\
\\
(x) =& (- \sqrt{2x})^2
&& \text{Subtract } \sqrt{2x}
\\
\\
x^2 =& 2x
&& \text{Square both sides}
\\
\\
x^2 - 2x =& 0
&& \text{Subtract } 2x
\\
\\
x( x - 2) =& 0
&& \text{Factor out } x
\\
\\
x =& 0 \text{ and } x - 2 = 0
&& \text{Zero Product Property}
\\
\\
x =& 0 \text{ and } x = 2
&& \text{Solve for } x

\end{aligned}
\end{equation}
$


c.) The solutions of the resulting quadratic equation are ______.

The solutions of the resulting quadratic equation are $x = 0$ and $x = 2$.

d.) The solution(s) that satisfy the original equation are ______.

The solution(s) that satisfy the original equation are $x = 0$ and $x = 2$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...