Wednesday, June 5, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 10

Determine the integral $\displaystyle \int^{\pi}_0 \cos^6 \theta d \theta$


$
\begin{equation}
\begin{aligned}

\int^{\pi}_0 \cos^6 \theta d \theta =& \int^{\pi}_0 (\cos^2 \theta)^3 d \theta
\qquad \text{Apply the half angle formula } \cos (2 \theta) = 2 \cos^2 \theta - 1
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \int^{\pi}_0 \left( \frac{\cos 2 \theta + 1}{2} \right)^3 d \theta
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \int^{\pi}_0 \left( \frac{\cos^3 2 \theta + 3 \cos^2 2 \theta + 3 \cos 2 \theta + 1}{8} \right) d \theta
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \frac{1}{8} \int^{\pi}_0 (\cos^3 2 \theta + 3 \cos^2 2 \theta + 3 \cos 2 \theta + 1) d \theta
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \frac{1}{8} \int^{\pi}_0 \cos^3 2 \theta d \theta + \frac{1}{8} \int^{\pi}_0 3 \cos^2 2 \theta d \theta + \frac{1}{8} \int^{\pi}_0 3 \cos 2 \theta d \theta + \frac{1}{8} \int^{\pi}_0 1 d \theta
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \frac{1}{8} \int^{\pi}_0 + \cos^3 2 \theta d \theta + \frac{3}{8} \int^{\pi}_0 \cos^2 2 \theta d \theta + \frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta + \frac{1}{8} \int^{\pi}_0 1 d \theta

\end{aligned}
\end{equation}
$


We let $u = 2 \theta$, then $du = 2 d \theta$, so $\displaystyle d \theta = \frac{du}{2}$. When $\theta = \theta, u = 0$ and when $\displaystyle \theta = \pi, u = 2 \pi$. We will integrate the equation term by term

@ 1st term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 \cos^3 2 \theta d \theta =& \frac{1}{8} \int^{2 \pi}_0 \cos^3 u \cdot \frac{du}{2}
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2 \theta d \theta =& \frac{1}{16} \int^{2 \pi}_0 \cos^3 u du
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2 \theta d \theta =& \frac{1}{16} \int^{2 \pi}_0 \cos^2 u du \cos u du
\qquad \text{Apply Trigonometric Identity } \cos^2 x = 1 - \sin^2 x
\\
\\
\frac{1}{8} \int^{\pi}_0 \cos^3 2 \theta d \theta =& \frac{1}{16} \int^{2 \pi}_0 (1 - \sin^2 u) \cos u du

\end{aligned}
\end{equation}
$


Let $v = \sin u$, then $dv = \cos u du$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 0$. Thus,


$
\begin{equation}
\begin{aligned}

\frac{1}{6} \int^{2 \pi}_0 (1 - \sin^2 u) \cos udu =& \frac{1}{6} \int^0_0 (1 - v^2) dv
\\
\\
\frac{1}{6} \int^{2 \pi}_0 (1 - \sin^2 u) \cos udu =& \frac{1}{16} \left[ v - \frac{v^{2 + 1}}{2 + 1} \right]^0_0
\\
\\
\frac{1}{6} \int^{2 \pi}_0 (1 - \sin^2 u) \cos udu =& \frac{1}{16} \left[ v - \frac{v^3}{3} \right]^0_0
\\
\\
\frac{1}{6} \int^{2 \pi}_0 (1 - \sin^2 u) \cos udu =& \frac{1}{16} (0)
\\
\\
\frac{1}{6} \int^{2 \pi}_0 (1 - \sin^2 u) \cos udu =& 0

\end{aligned}
\end{equation}
$


@ 2nd term


$
\begin{equation}
\begin{aligned}

\frac{3}{8} \int^{\pi}_0 \cos^2 2 \theta d \theta =& \frac{3}{8} \int^{2 \pi}_0 \cos^2 u \cdot \frac{du}{2}
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos^2 2 \theta d \theta =& \frac{3}{16 } \int^{2 \pi}_0 \cos^2 u du
\qquad \text{Apply half-angle formula } \cos 2a = 2 \cos^2 a - 1
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos^2 2 \theta d \theta =& \frac{3}{16} \int^{2 \pi}_0 \left( \frac{\cos 2 u + 1}{2} \right) du
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos^2 2 \theta d \theta =& \frac{3}{32} \int^{2 \pi}_0 (\cos 2u + 1) du

\end{aligned}
\end{equation}
$


Let $v = 2u$, then $dv = 2 du$, so $\displaystyle du = \frac{dv}{2}$. When $u = 0, v = 0$ and when $u = 2 \pi, v = 4 \pi$. Therefore,


$
\begin{equation}
\begin{aligned}

\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{32} \int^{4 \pi}_0 (\cos v + 1) \cdot \frac{dv}{2}
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{64} \int^{4 \pi}_0 (\cos v + 1) dv
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{64} \left[ \sin v + v \right]^{4 \pi}_0
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{64} (\sin 4 \pi + 4 \pi - \sin 0 - 0)
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{64} (0 + 4 \pi - 0 - 0)
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3}{64} (4 \pi)
\\
\\
\frac{3}{32} \int^{2 \pi}_0 (\cos 2 u + 1) du =& \frac{3 \pi}{16}

\end{aligned}
\end{equation}
$


@ 3rd term


$
\begin{equation}
\begin{aligned}

\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& \frac{3}{8} \int^{2 \pi}_0 \cos u \cdot \frac{du}{2}
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& \frac{3}{16} \int^{2 \pi}_0 \cos u du
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& \frac{3 }{16} \left[ \sin u \right]^{2 \pi}_0
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& \frac{3}{16} (\sin 2 \pi - \sin 0)
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& \frac{3}{16} (0)
\\
\\
\frac{3}{8} \int^{\pi}_0 \cos 2 \theta d \theta =& 0

\end{aligned}
\end{equation}
$


@ 4th term


$
\begin{equation}
\begin{aligned}

\frac{1}{8} \int^{\pi}_0 1 d \theta =& \frac{1}{8} \left[ \theta \right]^{\pi}_0
\\
\\
\frac{1}{8} \int^{\pi}_0 1 d \theta =& \frac{1}{8} (\pi - 0)
\\
\\
\frac{1}{8} \int^{\pi}_0 1 d \theta =& \frac{\pi}{8}

\end{aligned}
\end{equation}
$


We add all the results from integrating term by term.


$
\begin{equation}
\begin{aligned}

\int^{\pi}_0 \cos^6 \theta d \theta =& 0 + \frac{3 \pi}{16} + 0 + \frac{\pi}{8}
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \frac{0 + 3 \pi + 0 2 \pi}{16}
\\
\\
\int^{\pi}_0 \cos^6 \theta d \theta =& \frac{5 \pi}{16}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...