Wednesday, October 9, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 35

Determine the derivative of the function $\displaystyle y = \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^4$


$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^4\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \cdot \frac{d}{dx} \left( \frac{1-\cos 2x}{1+\cos 2x}\right)\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{(1+\cos 2x) \frac{d}{dx}(1-\cos 2x) - (1-\cos 2x) \frac{d}{dx} (1+\cos 2x) }{(1+\cos2x)^2}\right]\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{(1+\cos 2x)(-(-\sin2x)) \frac{d}{dx} (2x) - (1-\cos 2x)(-\sin 2x) \frac{d}{dx} (2x) }{(1+\cos 2x)^2}\right]\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{(1+\cos2x)(\sin2x)(2)-(1-\cos2x)(-\sin2x)(2)}{(1+\cos2x)^2}\right]\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{(1+\cos2x)(2\sin 2x)+(1-\cos2x)(2\sin2x)}{(1+\cos2x)^2}\right]\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{2 \sin 2x + \cancel{2\cos2x\sin2x}+2\sin 2x - \cancel{2\cos2x\sin2x}}{(1+\cos2x)^2}\right]\\
\\
y' &= 4 \left( \frac{1-\cos 2x}{1 + \cos 2x}\right)^3 \left[ \frac{4\sin 2x}{(1+\cos2x)^2} \right]\\
\\
y' &= \frac{(1-\cos2x)^3(16\sin2x)}{(1+\cos2x)^3(1+\cos2x)^2}\\
\\
y' &= \frac{(1-\cos2x)^3(16\sin2x)}{(1+\cos2x)^5}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...