Friday, October 18, 2019

Single Variable Calculus, Chapter 3, 3.7, Section 3.7, Problem 21

$
\begin{equation}
\begin{aligned}
\text{a.) } PV &= C\\
\\
V &= \frac{C}{P}\\
\\
\frac{dV}{dP} &= \frac{P \frac{d}{dP}(C) - (C) \cdot \frac{d}{dP} (P) }{P^2}\\
\\
\frac{dV}{dP} &= \frac{P(0) - (C) (1)}{P^2}\\
\\
\frac{dV}{dP} &= \frac{-C}{P^2}
\end{aligned}
\end{equation}
$


b.) When a gas is steadily compressed at constant temperature, the volume and the pressure inversely proportional to each other(as what Boyle's Law stated). From part(a), we know that the change in volume is proportional to $\displaystyle \frac{1}{P^2}$. At the end of 10 minutes, the pressure of the gas must be higher, making $\displaystyle \frac{dV}{dP} = \frac{1}{P^2}$ lower. Therefore, we can conclude that the volume is decreasing more rapidly at the beginning.

c.) Isothermal compressibility is denoted as $\displaystyle \beta = \frac{-1}{V} \frac{dV}{dP}$; but $\displaystyle \frac{dV}{dP} = \frac{-C}{P^2}$ and $\displaystyle V = \frac{C}{P}$ so,


$
\begin{equation}
\begin{aligned}
\beta &= \frac{-1}{\frac{C}{P}} \left( \frac{-C}{P^2}\right)\\
\\
\beta &= -\frac{\cancel{P}}{\cancel{C}} \left( \frac{-\cancel{C}}{P^{\cancel{2}}} \right)\\
\\
\beta &= \frac{1}{P}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...