Friday, December 16, 2011

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 32

Suppose the matrices $A, B, C, D, E, F, G$ and $H$ are defined as



$
\begin{equation}
\begin{aligned}


A =& \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array}
\right]

&& B = \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

&&& C = \left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]

&&&& D = \left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\\
\\
\\
\\
E =& \left[ \begin{array}{c}
1 \\
2 \\
0
\end{array}
\right]

&& F = \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\right]

&&& G = \left[ \begin{array}{ccc}
5 & -3 & 10 \\
6 & 1 & 0 \\
-5 & 2 & 2
\end{array} \right]

&&&& H = \left[ \begin{array}{cc}
3 & 1 \\
2 & -1
\end{array} \right]


\end{aligned}
\end{equation}
$


Carry out the indicated algebraic operation, or explain why it cannot be performed.

a.) $(DA) B$


$
\begin{equation}
\begin{aligned}

(DA) B =& \left( \left[ \begin{array}{cc}
7 & 3 \end{array} \right]

\left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array} \right] \right)

\left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

\\
\\
\\

=& \left( \left[ \begin{array}{cc}
7 \cdot 2 + 0 \cdot 0 & 7 \cdot (-5) + 0 \cdot 1
\end{array} \right] \right)

\left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{cc}
14 \cdot 3 + (-35) \cdot 1 & \displaystyle 14 \cdot \frac{1}{2} + (-35) \cdot (-1) & 14 \cdot 5 + (-35) \cdot 3
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
7 & 42 & -35
\end{array} \right]


\end{aligned}
\end{equation}
$


b.) $D(AB)$


$
\begin{equation}
\begin{aligned}

D(AB) =& \left[ \begin{array}{cc}
7 & 3
\end{array} \right]

\left( \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array} \right]
\left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]
\right)

\\
\\
\\

=& \left[ \begin{array}{cc}
7 & 3
\end{array} \right]

\left( \left[ \begin{array}{ccc}
2 \cdot 3 + (-5) \cdot 1 & \displaystyle 2 \cdot \frac{1}{2} + (-5) \cdot (-1) & 2 \cdot 5 + (-5) \cdot 3 \\
0 \cdot 3 + 7 \cdot 1 & \displaystyle 0 \cdot \frac{1}{2} + 7 \cdot (-1) & 0 \cdot 5 + 7 \cdot 3
\end{array} \right] \right)

\\
\\
\\


=& \left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\left[ \begin{array}{ccc}
1 & 6 & -5 \\
7 & -7 & 21
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
7 \cdot 1 + (-5 \cdot 7) & 7 \cdot 6 + (-5) \cdot (-7) & 7 \cdot (-5) + (-5) \cdot 21
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
-28 & 77 & -140
\end{array} \right]


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...