Thursday, December 15, 2011

Single Variable Calculus, Chapter 3, 3.9, Section 3.9, Problem 28

Estimate $\sqrt{99.8}$ by using linear approximation or differentials
Using Linear Approximation
$L(x) = f(a) + f'(a)(x-a)$
Lt $f(x) = \sqrt{x}$, $x = a = 100$



$
\begin{equation}
\begin{aligned}
f'(a) = f'(100) &= \frac{d}{dx}(x)^{\frac{1}{2}}\\
\\
f'(100) &= \frac{1}{2} (x)^{\frac{-1}{2}}\\
\\
f'(100) &= \frac{1}{2(x)^{\frac{1}{2}}}\\
\\
f'(100) &= \frac{1}{2\sqrt{100}}\\
\\
f'(100) &= \frac{1}{2(10)}\\
\\
f'(100) &= \frac{1}{20}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
L(x) &= 10 + \frac{1}{20} ( x - 100 )\\
\\
L(x) &= 10 + \frac{x-100}{20}\\
\\
L(x) &= \frac{200+x-100}{20}\\
\\
L(x) &= \frac{x+100}{20}\\
\\
L(x) &= \frac{99.8+100}{20}\\
\\
L(x) &= \frac{199.8}{20}\\
\\
L(x) &= 9.99
\end{aligned}
\end{equation}
$

So,
$\sqrt{99.8} \approx 9.99$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...