Thursday, December 15, 2011

Single Variable Calculus, Chapter 7, 7.1, Section 7.1, Problem 34

Suppose that $f(x) = \sqrt{x-2}$, $a = 2$
a.) Show that $f$ is a one-to-one.
b.) Use the theorem in inverse function to find for $(f^{-1})' (a)$
c.) Calculate $f^{-1}(x)$ and state the domain and range of $f^{-1}$
d.) Calculate $(f^{-1}) (a)$ from the formula in part(c) and check that it agrees with the results in part(b).
e.) On the same plane, sketch the graphs of $f$ and $f^{-1}$

a.) If $f(x) = \sqrt{x-2}$. Then,
$\displaystyle f'(x) = \frac{1}{2\sqrt{x - 2}} > 0$ for its doamion $[2, \infty)$
$f$ is always increasing, therefore, no values of $x$ will give the same values of $y$. Thus, $f$ is a one-to-one.

b.) Based from the theorem,

$
\begin{equation}
\begin{aligned}
\left( f^{-1} \right)' (x) &= \frac{1}{f' \left( f^{-1}(a) \right)}\\
\\
\text{we know that } f'(x) &= \frac{1}{2\sqrt{x-2}}\\
\\
\text{if we let } x = f^{-1}(2), \text{ then}\\
\\
f(x) &= f\left( f^{-1}(2) \right)\\
\\
\sqrt{x-2} &= 2\\
\\
x - 2 &= \pm 4\\
\\
x &= \pm 4 + 2
\end{aligned}
\end{equation}
$

We got $x = 6$ and $x = -2$, however $x = -2$ is not defined in the domain of $x$. Therefore, $f^{-1}(2) = 6$
Thus,

$
\begin{equation}
\begin{aligned}
\left( f^{-1} \right)'(2) &= \frac{1}{f'\left( f^{-1}(2) \right)} = \frac{1}{f'(6)} = \frac{1}{\frac{1}{2\sqrt{6-2}}}\\
\\
&= 2\sqrt{4} = 4
\end{aligned}
\end{equation}
$

c.) If $f(x) = \sqrt{x-2}$, then

$
\begin{equation}
\begin{aligned}
f^{-1}(x) \quad \Longrightarrow \quad x &= \sqrt{y - 2}\\
\\
x^2 &= y - 2\\
\\
y &= 2 + x^2
\end{aligned}
\end{equation}
$

Thus,
$f^{-1}(x) = 2 + x^2$, we know that the domain of $f$ is $[2, \infty)$ and its range is $[0, \infty)$. Thus, the domain of $f^{-1}(x)$ is $[0,\infty)$ and its range is $[2, \infty)$.

d.) If $f^{-1}(x) = 2 + x^2$, then

$
\begin{equation}
\begin{aligned}
\left( f^{-1} \right)' (x) &= 2x \\
\\
\text{when } x = 2, \text{ then}\\
\\
\left( f^{-1} \right)'(2) &= 2(2)\\
\\
\left( f^{-1} \right)' (2) &= 4
\end{aligned}
\end{equation}
$

We can say that the answer agree with part(b)

e.)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...