Wednesday, January 18, 2012

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 88

Differentiate $\displaystyle w = \frac{u}{\sqrt{1 + u^2}}$

By applying Quotient Rule and Chain Rule, we get

$
\begin{equation}
\begin{aligned}
w'(u) &= \frac{(1 + u^2)^{\frac{1}{2}} \cdot \frac{d}{du} (u) - (u) \cdot \frac{d}{du} (1 + u^2)^{\frac{1}{2}} }{\left[(1 + u^2)^{\frac{1}{2}} \right]^2}\\
\\
w'(u) &= \frac{(1 + u^2)^{\frac{1}{2}}(1) - (u) \cdot \frac{1}{2} (1 + u^2)^{\frac{1}{2}-1} \cdot \frac{d}{du} ( 1 + u^2) }{1 + u^2}\\
\\
w'(u) &= \frac{(1 + u^2)^{\frac{1}{2}} - u \cdot \frac{1}{2} ( 1 + u^2)^{-\frac{1}{2}} (2u) }{1 + u^2}\\
\\
w'(u) &= \frac{(1 + u^2)^{\frac{1}{2}} - \frac{u^2}{(1 + u^2)^{\frac{1}{2}}} }{1 + u^2}\\
\\
w'(u) &= \frac{1 + u^2 - u^2}{(1 + u^2)^{\frac{1}{2}} (1 + u^2) }\\
\\
&= \frac{1}{(1 + u^2)^{\frac{3}{2}}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...