Tuesday, January 17, 2012

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 21

Find the derivative of $\displaystyle f(x) = x^3 - 3x + 5$ using the definition and the domain of its derivative.

Using the definition of derivative


$
\begin{equation}
\begin{aligned}

\qquad f'(x) &= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
&&
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{(x + h)^3 - 3(x + h) + 5 - (x^3 - 3x + 5)}{h}
&& \text{Substitute $f(x + h)$ and $f(x)$}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{x^3} + 3x^2 h + 3xh^2 + h^3 - \cancel{3x} - 3h + \cancel{5} - \cancel{x^3} + \cancel{3x} - \cancel{5}} {h}
&& \text{Expand and combine like terms}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{3x^2 h + 3xh ^2 + h^3 - h}{h}
&& \text{Factor the numerator}
\\
\\
\qquad f'(x) &= \lim_{h \to 0} \frac{\cancel{h}(3x^2 + 3xh + h^2 - 3)}{\cancel{h}}
&& \text{Cancel out like terms}
\\
\\
\qquad f'(t) &= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 3) = 3x^2 + 3x(0) + (0)^2 - 3
&& \text{Evaluate the limit}

\end{aligned}
\end{equation}
$


$\qquad \fbox{$f'(x) = 3x^2 - 3$}$

Both $f(x)$ and $f'(x)$ are polynomiale functions that are continuous on every number. Therefore, their domain is $(-\infty, \infty)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...