Wednesday, August 1, 2012

College Algebra, Chapter 1, 1.6, Section 1.6, Problem 24

Solve the linear inequality $\displaystyle \frac{2}{3} - \frac{1}{2} x \geq \frac{1}{6} + x$. Express the solution using interval notation and graph the solution set.


$
\begin{equation}
\begin{aligned}

& \frac{2}{3} - \frac{1}{2} x \geq \frac{1}{6} + x
&& \text{Given}
\\
\\
& \frac{2}{3} - \frac{1}{6} \geq x + \frac{1}{2} x
&& \text{Add } \frac{1}{2} x \text{ and subtract } \frac{1}{6}
\\
\\
& \frac{4 - 1}{6} \geq \frac{3}{2} x
&& \text{Common denominator}
\\
\\
& \frac{3}{6} \geq \frac{3}{2} x
&& \text{Simplify}
\\
\\
& \frac{3}{6} \left( \frac{2}{3} \right) \geq x
&& \text{Multiply both sides by } \frac{2}{3}
\\
\\
& \frac{1}{3} \geq x
&& \text{Simplify}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...