Saturday, December 15, 2012

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 22

Determine the equation of the tangent line to the curve $y = (1 + x) \cos x$ at the given point $(0,1)$


$
\begin{equation}
\begin{aligned}

\qquad y' =& (1 + x) \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (1 + x)
&& \text{Using Product Rule}
\\
\\
\qquad y' =& (1 + x) (- \sin x) ++ (\cos x) (1)
&& \text{Simplify the equation}
\\
\\
\qquad y' =& - \sin x - x \sin x + \cos x
&&

\end{aligned}
\end{equation}
$


Let $y' = m_T$ (slope of the tangent line)


$
\begin{equation}
\begin{aligned}

y' = m_T =& - \sin (0) - (0) (\sin 0) + \cos (0)
&& \text{Substitute value of $x$}
\\
\\
m_T =& 1
&&

\end{aligned}
\end{equation}
$


Using Point Slope Form substitute the values of $x, y$ and $m_T$


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
\\
\\
y - 1 =& 1 ( x -0)
\\
\\
y - 1=& x
\\
\\
y =& x + 1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...