Tuesday, February 5, 2013

Calculus of a Single Variable, Chapter 8, 8.7, Section 8.7, Problem 23

Given to solve,
lim_(x->oo) (5x^2 +3x-1)/(4x^2 +5)
as x->oo then the (5x^2 +3x-1)/(4x^2 +5)=oo/oo form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
lim_(x->a) f(x)/g(x) is = 0/0 or (+-oo)/(+-oo) then by using the L'Hopital Rule we get the solution with the below form.
lim_(x->a) (f'(x))/(g'(x))

so , now evaluating
lim_(x->oo) (5x^2 +3x-1)/(4x^2 +5)
= lim_(x->oo) ((5x^2 +3x-1)')/((4x^2 +5)')
= lim_(x->oo) (10x+3)/(8x)
the above limit is of the form oo/oo
so again applying the L'Hopital rule we get
lim_(x->oo) (10x+3)/(8x)
= lim_(x->oo) ((10x+3)')/((8x)')
=lim_(x->oo) (10)/((8))
= 10/8
=5/4

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...