Saturday, March 16, 2013

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 34

Suppose the matrices $A, B, C, D, E, F, G$ and $H$ are defined as



$
\begin{equation}
\begin{aligned}


A =& \left[ \begin{array}{cc}
2 & -5 \\
0 & 7
\end{array}
\right]

&& B = \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

&&& C = \left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]

&&&& D = \left[ \begin{array}{cc}
7 & 3
\end{array} \right]
\\
\\
\\
\\
E =& \left[ \begin{array}{c}
1 \\
2 \\
0
\end{array}
\right]

&& F = \left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
\right]

&&& G = \left[ \begin{array}{ccc}
5 & -3 & 10 \\
6 & 1 & 0 \\
-5 & 2 & 2
\end{array} \right]

&&&& H = \left[ \begin{array}{cc}
3 & 1 \\
2 & -1
\end{array} \right]


\end{aligned}
\end{equation}
$


Carry out the indicated algebraic operation, or explain why it cannot be performed.

a.) $DB + DC$


$
\begin{equation}
\begin{aligned}

DB + DC =& \left[ \begin{array}{cc}
7 & 3 \end{array} \right]

\left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

+
\left[ \begin{array}{cc}
7 & 3 \end{array} \right]

\left[ \begin{array}{ccc}
2 & \displaystyle \frac{-5}{2} & 0 \\
0 & 2 & -3
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
7 \cdot 3 + 3 \cdot 1 & \displaystyle 7 \cdot \frac{1}{2} + 3 \cdot (-1) & 7 \cdot 5 + 3 \cdot 3
\end{array} \right]

\left[ \begin{array}{ccc}
7 \cdot 2 + 3 \cdot 0 & \displaystyle 7 \cdot \left( \frac{-5}{2} \right) + 3 \cdot 2 & 7 \cdot 0 + 3 \cdot (-3)
\end{array} \right]

\\
\\
\\

=&
\left[ \begin{array}{ccc}
24 & \displaystyle \frac{1}{2} & 44
\end{array} \right]
+

\left[ \begin{array}{ccc}
14 & \displaystyle - \frac{23}{2} & -9
\end{array} \right]


\end{aligned}
\end{equation}
$


b.) $BF + FE$


$
\begin{equation}
\begin{aligned}

BF + FE =& \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right]

\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right] +

\left[ \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right]

\left[ \begin{array}{ccc}
1\\
2\\
0
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
\displaystyle 3 \cdot 1 + \frac{1}{2} \cdot 0 + 5 \cdot 3 & \displaystyle 3 \cdot 0 + \frac{1}{2} \cdot 1 + 5 \cdot 0 & \displaystyle 3 \cdot 0 + \frac{1}{2} \cdot 0 + 5 \cdot 1 \\
1 \cdot 1 + (-1) \cdot 0 + 3 \cdot 0 & 1 \cdot 0 +(-1) \cdot 1 + 3 \cdot 0 & 1 \cdot 0 + (-1) \cdot 1 + 3 \cdot 1
\end{array} \right]

+

\left[ \begin{array}{c}
1 \cdot 1 + 0 \cdot 2 + 0 \cdot 0 \\
0 \cdot 1 + 1 \cdot 2 + 0 \cdot 0 \\
0 \cdot 1 + 0 \cdot 2 + 1 \cdot 0
\end{array} \right]

\\
\\
\\

=& \left[ \begin{array}{ccc}
3 & \displaystyle \frac{1}{2} & 5 \\
1 & -1 & 3
\end{array} \right] + \left[ \begin{array}{c}
1 \\
2 \\
0
\end{array} \right]

\end{aligned}
\end{equation}
$


$BF + FE$ is not undefined because we cannot add matrices of different dimensions.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...