Saturday, March 16, 2013

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 37

Find the function $f \circ g \circ h$.



$f(x) = x+1 , \qquad \quad g(x) = 2x ,\qquad \quad h(x) = x - 1$



$
\begin{equation}
\begin{aligned}
f \circ g \circ h &= f(g(h(x)))\\

\text{Solving for $g \circ h$}\\

g(h(x)) =& 2x
&& \text{Substitute the given function $h(x)$ to the value of $x$ of the function $g(x)$}\\

g(x -1) =& 2x \\

g(x -1) =& 2(x - 1)
&&\text{ Simplify the equation}\\

g \circ h =& 2x -2 \\


\text{Solving for $f \circ g \circ h$}\\

g \circ h =& 2x -2\\

f \circ g \circ h =& f(g(h(x)))\\

f(2x - 2) =& x+1
&& \text{ Substitute the value of $x$}\\

f(2x - 2) =& 2x - 2 +1
&& \text{ Combine like terms}\\

\end{aligned}
\end{equation}
$



$\qquad \qquad \boxed{f \circ g \circ h = 2x - 1}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...