Wednesday, January 8, 2014

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 36

You need to use integration by parts, such that:
int udv = uv - int vdu
u = e^s => du = e^s ds
dv = sin(t-s) => v = (-cos(t-s))/(-1)
int e^s sin (t-s) ds = e^s*cos(t-s) - int e^s*cos(t-s)ds
You need to use parts again, for int e^s*cos(t-s)ds , such that:
u = e^s => du = e^s ds
dv = cos(t-s) => v = (sin(t-s))/(-1)
int e^s*cos(t-s)ds = -e^s*sin (t-s) + int e^s*sin (t-s) ds
Replacing back, yields:
int e^s sin (t-s) ds = e^s*cos(t-s) - (-e^s*sin (t-s) + int e^s*sin (t-s) ds)
You need to use the substitution int e^s sin (t-s) ds= I:
I = e^s*cos(t-s) + e^s*sin (t-s)- I
2I = e^s*cos(t-s) + e^s*sin (t-s) => I = (e^s*(cos(t-s)+sin(t-s)))/2
You need to evaluate the definite integral, using the fundamental theorem of calculus, such that:

int_0^t e^s sin (t-s) ds = (e^s*(cos(t-s)+sin(t-s)))/2|_0^t
int_0^t e^s sin (t-s) ds = (e^t*(cos(t-t)+sin(t-t)) - e^0*(cos(t-0)+sin(t-0)))/2

int_0^t e^s sin (t-s) ds = (e^t - cos t - sin t)/2
Hence, evaluating the definite integral, using integration by parts, yields int_0^t e^s sin (t-s) ds = (e^t - cos t - sin t)/2.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...