Tuesday, January 28, 2014

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 22

Find all real solutions of the equation $\displaystyle 1 + \frac{2x}{(x + 3)(x + 4)} = \frac{2}{x + 3} + \frac{4}{x + 4}$


$
\begin{equation}
\begin{aligned}

1 + \frac{2x}{(x + 3)(x + 4)} =& \frac{2}{x + 3} + \frac{4}{x + 4}
&& \text{Given}
\\
\\
(x + 3)(x + 4) + 2x =& 2(x + 4) + 4(x + 3)
&& \text{Multiply the LCD } (x + 3)(x + 4)
\\
\\
x^2 + 7x + 12 + 2x =& 2x + 8 + 4x + 12
&& \text{Expand using FOIL method and Distributive Property}
\\
\\
x^2 + 3x =& 8
&& \text{Combine like terms}
\\
\\
x^2 + 3x + \frac{9}{4} =& 8 + \frac{9}{4}
&& \text{Complete the square: add } \left( \frac{3}{2} \right)^2 = \frac{9}{4}
\\
\\
\left(x + \frac{3}{2} \right)^2 =& \frac{41}{4}
&& \text{Perfect Square}
\\
\\
x + \frac{3}{2} =& \pm \sqrt{\frac{41}{4}}
&& \text{Take the square root}
\\
\\
x =& \frac{-3}{2} \pm \frac{\sqrt{41}}{2}
&& \text{Subtract } \frac{3}{2} \text{ and simplify}
\\
\\
x =& \frac{-3 + \sqrt{41}}{2} \text{ and } x = \frac{-3 - \sqrt{41}}{2}
&& \text{Solve for } x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...