Saturday, January 18, 2014

Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 56

Determine the thousandth derivative of $f(x) = xe^{-x}$.


$
\begin{equation}
\begin{aligned}

\text{if } f(x) =& xe^{-x}, \text{ then by using Product Rule}
\\
\\
f'(x) =& xe^{-x} (-1) + e^{-x} = -xe^{-x} + e^{-x}
\\
\\
\text{then } &
\\
\\
f''(x) =& -2e^{-x} + xe^{-x}
\\
\\
f'''(x) =& 3e^{-x} - xe^{-x}
\\
\\
f^4(x) =& -4e^{-x} + xe^{-x}


\end{aligned}
\end{equation}
$



So, by looking to these pattern we can formulate the derivative of the function for any number $n$.


$
\begin{equation}
\begin{aligned}

f^{(n)} (x) =& (-1)^{n + 1} ne^{-x} + (-1)^n xe^{-x}
\\
\\
f^{(n)} (x) =& (-1)^n (x - n)e^{-x}

\end{aligned}
\end{equation}
$


Therefore,


$
\begin{equation}
\begin{aligned}

f^{(1000)} (x) =& (-1)^{1000} (x - 1000) e^{-x}
\\
\\
f^{(1000)} (x) =& (1)(x - 1000) e^{-x}
\\
\\
f^{(1000)} (x) =& xe^{-x} - 1000 e^{-x}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...