Sunday, January 19, 2014

College Algebra, Chapter 7, 7.3, Section 7.3, Problem 24

Determine the inverse of the matrix $\left[ \begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array} \right]$ if it exists.

First, let's add the identity matrix to the right of our matrix

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array} \right]$

By using Gauss-Jordan Elimination

$\displaystyle R_3 - R_1 \to R_3 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_4 - R_1 \to R_4 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_3 - R_2 \to R_3 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 1 & 0 \\
0 & 1 & 0 & 1 & -1 & 0 & 0 & 1
\end{array} \right]$

$\displaystyle R_4 - R_2 \to R_4 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 1
\end{array} \right]$

$\displaystyle - R_3 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 1
\end{array} \right]$

$\displaystyle - R_4 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & -1
\end{array} \right]$

$\displaystyle R_3 - R_4 \to R_3 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & -1
\end{array} \right]$

$\displaystyle R_1 - R_4 \to R_1 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & -1
\end{array} \right]$

$\displaystyle R_2 - R_3 \to R_2 $

$\left[ \begin{array}{cccc|cccc}
1 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & -1
\end{array} \right]$


The given matrix doesn't have an inverse because the left half of the matrix can not convert to identity matrix.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...