Saturday, January 18, 2014

int lnx/x^3 dx Find the indefinite integral

Given to solve,
int (ln(x))/x^3 dx
let u = ln(x) => u' = (1/x)
and v' = (x^(-3)) =>
v = x^(-3+1)/(-3+1)
= x^(-2)/(-2)
=(-1)/(2x^2)
by applyinght integration by parts we get,
int uv' dx = uv - int u'v dx
so ,
int (ln(x))/x^3 dx
=(ln(x))((-1)/(2x^2)) - int (1/x)((-1)/(2x^2)) dx
= -ln(x)/(2x^2) + int (1/x)((1)/(2x^2)) dx
= -ln(x)/(2x^2) + int ((1)/(2x^3)) dx
=-ln(x)/(2x^2) + (1/2) int ((1)/(x^3)) dx
= -ln(x)/(2x^2) + (1/2) [x^(-3+1)/(-3+1)]
= -ln(x)/(2x^2) + (1/2) [x^(-2)/(-2)]
=-ln(x)/(2x^2) - 1/4 x^(-2) +c
= 1/(2x^2) (-lnx-1/2) + c
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...