Wednesday, January 22, 2014

sum_(n=1)^oo (-1)^(n-1)(3/2)^n/n^2 Use the Root Test to determine the convergence or divergence of the series.

In using Root test on a series sum a_n, we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
 Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent.
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
We may apply the Root Test to determine the convergence or divergence of the series sum_(n=1)^oo (-1)^(n-1) *(3/2)^n/n^2 .
lim_(n-gtoo) |((-1)^(n-1) *(3/2)^n/n^2 )^(1/n)| =lim_(n-gtoo) |(-1)^((n-1)*1/n)(3/2)^(n*1/n)/n^(2*1/n)|
            =lim_(n-gtoo) |(-1)^(n/n-1/n)(3/2)^(n/n)/n^(2/n)|
            =lim_(n-gtoo)( 1 * (3/2)^1/n^(2/n))
           =lim_(n-gtoo) (3/2)/n^(2/n)
Note: |(-1)^(n/n-1/n)| = 1
Apply the limit property: lim_(x-gta)[(f(x))/(g(x))] =(lim_(x-gta) f(x))/(lim_(x-gta) g(x)).
lim_(n-gtoo) (3/2)/n^(2/n)=(lim_(n-gtoo) 3/2)/(lim_(n-gtoo)n^(2/n))
                  = ((3/2))/1
                  =3/2 or 1.5
The limit value L = 3/2 or 1.5 satisfies the condition: Lgt1 since 3/2gt 1 or 1.5gt1 .
Thus, the series sum_(n=1)^oo (-1)^(n-1) *(3/2)^n/n^2 is divergent. 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...