Saturday, June 14, 2014

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 20

Solve the system of equations $
\begin{equation}
\begin{aligned}

2x - y + 3z =& 6 \\
x + 2y - z =& 8 \\
2y + z =& 1

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

2x - y + 3z =& 6
&& \text{Equation 1}
\\
-2x - 4y + 2z =& -16
&& -2 \times \text{ Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{-2x} - 5y + 5z =& -10
&& \text{Add}
\\
-y + z =& -2
&& \text{Reduce to lowest terms}

\end{aligned}
\end{equation}
$


We write the equations in two variables as a system


$
\begin{equation}
\begin{aligned}

-y + z =& -2
&& \text{Equation 4}
\\
2y + z =& 1
&& \text{Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-2y + 2z =& -4
&& 2 \times \text{ Equation 4}
\\
2y + z =& 1
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{2y + } 3z =& -3
&& \text{Add}
\\
z =& -1
&& \text{Divide each side by $3$}

\end{aligned}
\end{equation}
$





$
\begin{equation}
\begin{aligned}

2y + (-1) =& 1
&& \text{Substitute } z = -1 \text{ in Equation 3}
\\
2y =& 2
&& \text{Add each side by $1$}
\\
y =& 1
&& \text{Divide each side by $2$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2x - 1 + 3(-1) =& 6
&& \text{Substitute } y = 1 \text{ and } z = -1 \text{ in Equation 1}
\\
2x - 1 - 3 =& 6
&& \text{Multiply}
\\
2x - 4 =& 6
&& \text{Combine like terms}
\\
2x =& 10
&& \text{Add each side by $4$}
\\
x =& 5
&& \text{Divide each side by $2$}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( 5,1,-1 \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...