Monday, June 9, 2014

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 32

a.) Find an equation of the tangent line to the curve $y^2 = x^3 + 3x^2$ which is also called Tschirnhausean Cubic, at the point $(1, -2)$

Solving for the slope $(m)$



$
\begin{equation}
\begin{aligned}

\frac{d}{dx} (y^2) =& \frac{d}{dx} (x^3) + 3 \frac{d}{dx} (x^2)
\\
\\
2y \frac{dy}{dx} =& 3x^2 + (3)(2x)
\\
\\
2yy' =& 3x^2 + 6x
\\
\\
\frac{\cancel{2y}y'}{\cancel{2y}} =& \frac{3x^2 + 6x}{2y}
\\
\\
y' =& \frac{3x^2 + 6x}{2y}

\end{aligned}
\end{equation}
$


For $x = 1$ and $y = 2$, we obtain


$
\begin{equation}
\begin{aligned}

y' = m =& \frac{3(1)^2 + 6 (1)}{2(-2)}
\\
\\
m =& \frac{9}{-4}
\\
\\
m =& \frac{-9}{4}

\end{aligned}
\end{equation}
$


Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_1 =& m(x - x_1)
\\
\\
y - (-2) =& \frac{-9}{4} (x - 1)
\\
\\
y + 2 =& \frac{-9x + 9}{4}
\\
\\
y =& \frac{-9x + 9}{4} - 2
\\
\\
y =& \frac{-9x + 9 - 8}{4}
\\
\\
y =& \frac{-9x + 1}{4}
\qquad \text{Equation of the tangent line at $(1, -2)$}

\end{aligned}
\end{equation}
$


b.) Where does this curve have horizontal tangents?

Using the equation in part (a) to solve for $x$


$
\begin{equation}
\begin{aligned}

& y' = \frac{3x^2 + 6x}{2y} \qquad \qquad \text{where the slope is zero}
\\
\\
& 0 = \frac{3x^2 + 6x}{2y}
\\
\\
& 3x^2 + 6x = 0
\\
\\
& 3x(x + 2) = 0
\\
\\
& \begin{array}{c||c}
3x = 0 & x + 2 = 0 \\
x = 0 & x = -2
\end{array}

\end{aligned}
\end{equation}
$


Solving for $y$, when $x = 0$


$
\begin{equation}
\begin{aligned}

y^2 =& x^3 + 3x^2
\\
\\
y^2 =& (0)^3 + 3(0)^2
\\
\\
y^2 =& 0
\\
\\
y =& 0

\end{aligned}
\end{equation}
$


Solving for $y$, when $x = -2$


$
\begin{equation}
\begin{aligned}

y^2 =& (-2)^3 + 3(-2)^2
\\
\\
y^2 =& -8 + 12
\\
\\
y^2 =& 4
\\
\\
y =& \pm \sqrt{4}
\\
\\
y =& \pm 2

\end{aligned}
\end{equation}
$


The points where the curve have horizontal tangents are $(-2, -2), (-2, 2)$.

c.) Graph parts (a) and (b) using the curve and the tangent lines on a common screen.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...