Monday, June 2, 2014

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 4

Find the integral $\displaystyle \int \frac{dt}{(1 - 6t)^4}$, by making $u = 1 - 6t$

If $u = 1 - 6t$, then $du = -6dt$, so $\displaystyle dt = \frac{-1}{6} du$. And


$
\begin{equation}
\begin{aligned}

\int \frac{1}{(1 - 6t)^4} dt =& \int \frac{1}{u^4} \cdot \frac{-1}{6} du
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{-1}{6} \int ^{-4} du
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{-1}{6} \cdot \frac{u^{-4 + 1}}{-4 + 1} + C
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{-1}{6} \cdot \frac{u^{-3}}{-3} + C
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{u^{-3}}{18} + C
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{(1 - 6t)^{-3}}{18} + C
\\
\\
\int \frac{1}{(1 - 6t)^4} dt =& \frac{1}{18 (1 - 6t)^3} + C


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...