Sunday, June 8, 2014

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 18

Find the derivative of the function $\displaystyle y = \int^0_{\frac{1}{x^2}} \sin^3 t dt$ using the 1st Fundamental Theorem of Calculus.

Using Properties of Integral

$\displaystyle \int^a_b f(x) dx = - \int^b_a f(x) dx$

So we have

$\displaystyle \int^0_{\frac{1}{x^2}} \sin^3 t dt = - \int^{\frac{1}{x^2}}_0 \sin ^ 3 t dt$

Let $\displaystyle u = \frac{1}{x^2}, \frac{du}{dx} = - \frac{2}{x^3}$. Then,


$
\begin{equation}
\begin{aligned}

\frac{d}{dx} \int^{\frac{1}{x^2}}_0 \sin^3 t dt =& \frac{d}{dx} \left(\int^u_0 - \sin^3 t dt \right)
\\
\\
y' =& \frac{d}{du} \left(\int^u_0 - \sin ^3 t dt \right) \frac{du}{dx}
\\
\\
y' =& (- \sin ^3 u) \frac{du}{dx}
\\
\\
y' =& \left(- \sin ^3 \frac{1}{x^2}\right) \left( \frac{-2}{x^3} \right)
\\
\\
y' =& \frac{2}{x^3} \sin ^2 \left( \frac{1}{x^2} \right)

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...