Tuesday, November 11, 2014

Intermediate Algebra, Chapter 2, 2.1, Section 2.1, Problem 62

Evaluate the equation $\displaystyle \frac{2x + 5}{5} = \frac{3x + 1}{2} + \frac{-x + 7}{2}$ and check your solution.


$
\begin{equation}
\begin{aligned}

\frac{2x + 5}{5} =& \frac{3x + 1}{2} + \frac{-x + 7}{2}
&& \text{Given equation}
\\
\\
10 \left( \frac{2x + 5}{5} \right) =& 10 \left( \frac{3x + 1}{2} + \frac{-x + 7}{2} \right)
&& \text{Multiply each side by the LCD, } 10
\\
\\
4x + 10 =& 15x + 5 + (-5x) + 35
&& \text{Distributive property}
\\
\\
4x + 10 =& 10x + 40
&& \text{Combine like terms}
\\
\\
4x - 10x =& 40 - 10
&& \text{Subtract $(10x+10)$ from each side}
\\
\\
-6x =& 30
&& \text{Combine like terms}
\\
\\
\frac{-6x}{-6} =& \frac{30}{-6}
&& \text{Divide both sides by $-6$}
\\
\\
x =& -5
&&

\end{aligned}
\end{equation}
$


Checking:


$
\begin{equation}
\begin{aligned}

\frac{2(-5) + 5}{5} =& \frac{3(-5) + 1}{2} + \frac{-(-5) + 7}{2}
&& \text{Let } x = -5
\\
\\
\frac{-10 + 5}{5} =& \frac{-15 + 1}{2} + \frac{5 + 7}{2}
&& \text{Multiply}
\\
\\
\frac{-5}{5} =& \frac{-14}{2} + \frac{12}{2}
&& \text{Add the numerators}
\\
\\
-1 =& -7 + 6
&& \text{Simplify}
\\
\\
-1 =& -1
&& \text{True}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...