Thursday, November 13, 2014

sum_(n=1)^oo n/4^n Use the Root Test to determine the convergence or divergence of the series.

To apply the Root test on a series sum a_n , we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent.
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
In order to apply the Root Test in determining the convergence or divergence of the series sum_(n=1)^oo n/4^n , we let : a_n =n/4^n .
Applying the Root test, we set-up the limit as: 
lim_(n-gtoo) |n/4^n|^(1/n) =lim_(n-gtoo) (n/4^n)^(1/n)
Apply Law of  Exponents: (x*y)^n = x^n*y^n and (x^n)^m = x^(n*m) .
lim_(n-gtoo) (n/4^n)^(1/n)=lim_(n-gtoo) n^(1/n)/ (4^n)^(1/n)
                        =lim_(n-gtoo)n^(1/n)/ 4^(n*1/n)
                        =lim_(n-gtoo)n^(1/n)/ 4^(n/n)
                        =lim_(n-gtoo)n^(1/n)/ 4^1
                        =lim_(n-gtoo)n^(1/n)/ 4
Evaluate the limit.
lim_(n-gtoo) n^(1/n)/ 4 =1/4 lim_(n-gtoo) n^(1/n)         
                  =1/4 *1
                  =1/4 or 0.25
The limit value L =1/4 or 0.25 satisfies the condition: Llt1 since 1/4lt1 or 0.25lt1 .
Conclusion: The series sum_(n=1)^oo n/4^n is absolutely convergent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...