Monday, November 3, 2014

Single Variable Calculus, Chapter 7, 7.3-1, Section 7.3-1, Problem 34

Evaluate $\ln (2x + 1) = 2 - \ln x$ for $x$.

$
\begin{equation}
\begin{aligned}
\ln (2x + 1) &= 2 - \ln x\\
\\
\ln (2x + 1) + \ln x &= 2
\\
\ln [x (2x + 1)] &= 2\\
\\
e^{ \ln [x (2x + 1)] } &= e^2\\
\\
x(2x+ 1) &= e^2\\
\\
2x^2 + x &= e^2\\
\\
2x^2 + x - e^2 &= 0
\end{aligned}
\end{equation}
$


Using Quadratic Formula

$
\begin{equation}
\begin{aligned}
x &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\
\\
x &= \frac{-1 \pm \sqrt{(1)^2 - 4(2)(-e^2)}}{2(2)}\\
\\
x &= \frac{-1 \pm \sqrt{1+8e^2}}{4}
\end{aligned}
\end{equation}
$


Since, the value of $\displaystyle x = \frac{-1-\sqrt{1+8e^2}}{4}$ will result to a negative value it will not satisfy the original equation because $\ln - x$ is undefined. So $\displaystyle x = \frac{-1 + \sqrt{1+8e^2}}{4}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...