Tuesday, February 24, 2015

Calculus: Early Transcendentals, Chapter 1, 1.6, Section 1.6, Problem 26

Determine a formula for the inverse function $\displaystyle y= \frac{e^x}{1 + 2e^x}$

To find the inverse of $f$, we must first write
$\displaystyle y = \frac{e^x}{1 + 2e^x}$
Then we solve this equation for $x$

$
\begin{equation}
\begin{aligned}
y ( 1 + 2e^x) &= e^x\\
\\
y + 2e^x y &= e^x\\
\\
2e^x y - e^x &= - y\\
\\
e^x(2y - 1) &= -y\\
\\
e^x &= \frac{-y}{2y - 1}\\
\\
\ln e^x &= \ln \left[ \frac{-y}{2y - 1} \right]\\
\\
x &= \ln \left[ \frac{-y}{2y - 1} \right]
\end{aligned}
\end{equation}
$


Finally, we interchange $x$ and $y$:
$\displaystyle y = \ln \left[ \frac{-x}{2x - 1} \right]$

Therefore, the inverse function is
$\displaystyle f^{-1}(x) = \ln \left[ \frac{-x}{2x - 1} \right]$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...