Thursday, February 12, 2015

int tln(t+1) dt Find the indefinite integral

Recall that indefinite integral follows int f(x) dx = F(x) +C where:
f(x) as the integrand function
F(x) as the antiderivative of f(x)
C as the constant of integration.
 For the given  integral problem: int t ln(t+1) dt , we may apply u-substitution by letting:
u = t+1 that can be rearrange as t = u-1 .
The derivative of u is du= dt .
Plug-in the values, we get:
int t ln(t+1) dt= int (u-1) ln(u) du
Apply integration by parts: int f*g'=f*g - int g*f' .
We may let:
       f =ln(u) then f' =(du)/u
       g' =u-1 du then  g=u^2/2 -u
Note: g =int g' = int (u+1) du .
int (u-1) du =int (u) du- int (1) du
                       = u^(1+1)/(1+1) - 1u
                       = u^2/2 - u
Applying the formula for integration by parts, we set it up as:
int (u-1) ln(u) du = ln(u) * (u^2/2-u) - int(u^2/2-u) *(du)/u
                                   =(u^2ln(u))/2-u*ln(u) - int(u^2/(2u)-u/u) du
                                   =(u^2ln(u))/2-u*ln(u) - int(u/2-1) du
For the integral part:  int (u/2-1)  du, we apply the basic integration property:  int (u-v) dx = int (u) dx - int (v) dx .
int(u/2-1) du=int(u/2) du-int (1) du
                         = 1/2 int u - 1 int du
                        = 1/2*(u^2/2) - 1*u+C
                        = u^2/4 -u+C
Applying  int(u/2-1) du=u^2/4 -u+C , we get:
int (u-1) ln(u) du =(u^2ln(u))/2-uln(u) - int(u/2-1) du
                                  =(u^2ln(u))/2-u*ln(u) - [u^2/4 -u]+C
                                   =(u^2ln(u))/2-u*ln(u) - u^2/4 +u+C
Plug-in u = t+1 on (u^2ln(u))/2-u*ln(u) - u^2/4 +u+C , we get the complete indefinite integral as:
int t ln(t+1) dt=((t+1)^2ln(t+1))/2-(t+1)ln(t+1) - (t+1)^2/4 +t+1+C
                       OR  [(t+1)^2/2-t-1]ln(t+1) - (t+1)^2/4 +t+1+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...