Wednesday, February 11, 2015

f(x)=1/sqrt(1-x) Use the binomial series to find the Maclaurin series for the function.

 Binomial series is an example of an infinite series. When it is convergent at |x|lt1 , we may follow the sum of the binomial series as (1+x)^k where k is any number. We may follow the formula:
(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2) ...(k-n+1))/(n!) x^n
or
(1+x)^k = 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4+...
To evaluate the given function f(x) = 1/sqrt(1-x) , we may apply radical property: sqrt(x) = x^(1/2) . The function becomes:
f(x) = 1/ (1-x)^(1/2)
Apply Law of Exponents: 1/x^n = x^(-n) to rewrite  the function as:
f(x) = (1-x)^(-1/2)
or   f(x)= (1 -x)^(-0.5)
 This now resembles (1+x)^k form. By comparing "(1+x)^k " with "(1 -x)^(-0.5) or (1+(-x))^(-0.5) ”, we have the corresponding values:
x=-x and k =-0.5 .
Plug-in the values on the aforementioned formula for the binomial series, we get:
(1-x)^(-0.5) =sum_(n=0)^oo (-0.5(-0.5-1)(-0.5-2)...(-0.5-n+1))/(n!)(-x)^n
 =1 + (-0.5)(-x) + (-0.5(-0.5-1))/(2!) (-x)^2 + (-0.5(-0.5-1)(-0.5-2))/(3!)(-x)^3 +(-0.5(-0.5-1)(-0.5-2)(-0.5-3))/(4!)(-x)^4+...
=1 + 0.5x + (-0.5(-1.5))/(1*2) (-1)^2x^2 + (-0.5(-1.5)(-2.5))/(1*2*3) (-1)^3x^3 +(-0.5(-1.5)(-2.5)(-3.5))/(1*2*3*4)(-1)^4x^4+...
=1 + 0.5x + 0.75/2 (1)x^2 + (-1.875)/6 (-1)x^3 +(6.5625)/24(1)x^4+...
 =1 + 1/2x + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+...
Therefore, the Maclaurin series for the function f(x) =1/sqrt(1-x) can be expressed as:
1/sqrt(1-x)=1 + x/2 + (3x^2)/8 + (5x^3)/16 +(35x^4)/128+... 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...