Tuesday, February 17, 2015

Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 52

Prove that the function $y = Ae^{-x} + Bx e^{-x}$ satisfies the differential equation $y'' + 2y' + y = 0$.


$
\begin{equation}
\begin{aligned}

\text{if } y =& Ae^{-x} + Bx e^{-x}, \text{ then by using Product Rule}
\\
\\
y' =& Ae^{-x} (-1) + B [xe^{-x} (-1) + (1) e^{-x}]
\\
\\
y' =& -Ae^{-x} + Be^{-x} (-x + 1)

\end{aligned}
\end{equation}
$


Again, by using Product Rule


$
\begin{equation}
\begin{aligned}

y'' =& -Ae^{-x} (-1) + B [e^{-x} (-1) + e^{-x} (-1) (-x + 1)]
\\
\\
y'' =& Ae^{-x} + Be^{-x} [-1 + x - 1]
\\
\\
y'' =&Ae^{-x} + Be^{-x} [-2 + x]

\end{aligned}
\end{equation}
$


Therefore,


$
\begin{equation}
\begin{aligned}

& y'' + 2y' + y = 0
\\
\\
& [Ae^{-x} + Be^{-x} (-2 + x)] + 2 [-Ae^{-x} + Be^{-x} (-x + 1)] + [Ae^{-x} + Bxe^{-x}] = 0
\\
\\
& Ae^{-x} - 2Be^{-x} + Bxe^{-x} - 2Ae^{-x} - 2Bxe^{-x} + 2Be^{-x} + Ae^{-x} + Bxe^{-x} = 0
\\
\\
& 0 = 0

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...