Friday, February 6, 2015

y' = -sqrt(x)/(4y) Solve the differential equation.

An ordinary differential equation (ODE)  is differential equation for the derivative of a function of one variable. When an ODE is in a form of y'=f(x,y) , this is just a first order ordinary differential equation. 
The given problem: y' = -sqrt(x)/(4y) is in a form of y'=f(x,y) .
 To evaluate this, we may express y' as (dy)/(dx) .
 The problem becomes:
(dy)/(dx)= -sqrt(x)/(4y)
We may apply the variable separable differential equation: N(y) dy = M(x) d x.
Cross-multiply dx to the right side:
dy= -sqrt(x)/(4y)dx
Cross-multiply 4y to the left side:
4ydy= -sqrt(x)dx
Apply direct integration on both sides:
int 4ydy= int -sqrt(x)dx
Apply basic integration property: int c*f(x)dx = c int f(x) dx on both sides:
4 int ydy= (-1) int sqrt(x)dx
For the left side, we apply the Power Rule for integration: int u^n du= u^(n+1)/(n+1)+C .
4 int y dy = 4*y^(1+1)/(1+1)
               = 4*y^2/2
               = 2y^2
 
For the right side, we apply Law of Exponent: sqrt(x)= x^(1/2) before applying the Power Rule for integration: int u^n du= u^(n+1)/(n+1)+C .
(-1) int x^(1/2)dx =(-1) x^(1/2+1)/(1/2+1)+C
                       =- x^(3/2)/(3/2)+C
                       =- x^(3/2)*(2/3)+C
                        = -(2x^(3/2))/3+C
 
Combining the results, we get the general solution for differential equation:
2y^2= -(2x^(3/2))/3+C
We may simplify it as:
(1/2)[2y^2]= (1/2)[-(2x^(3/2))/3+C]
y^2= -(2x^(3/2))/6+C/2
y= +-sqrt(-(2x^(3/2))/6+C/2)
y= +-sqrt(-(x^(3/2))/3+C/2) 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...